找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:03:40 | 只看該作者
Explaining and Interpreting LSTMshly heterogeneous due to the variety of tasks to be solved. In this chapter, we explore how to adapt the Layer-wise Relevance Propagation (LRP) technique used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The speci
12#
發(fā)表于 2025-3-23 15:49:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:37:34 | 只看該作者
Gradient-Based Vs. Propagation-Based Explanations: An Axiomatic Comparisonses the question whether the produced explanations are reliable. In this chapter, we consider two popular explanation techniques, one based on gradient computation and one based on a propagation mechanism. We evaluate them using three “axiomatic” properties: ., ., and .. These properties are tested
14#
發(fā)表于 2025-3-24 01:27:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:59 | 只看該作者
https://doi.org/10.1007/978-3-030-03213-5put image) are responsible for a model’s output (i.e., a CNN classifier’s object class prediction). We first introduced these contributions in?[.]. We also briefly survey existing visual attribution methods and highlight how they faith to be both . and ..
16#
發(fā)表于 2025-3-24 06:32:58 | 只看該作者
Kathy L. Bradley-Klug,Emily Shaffer-Hudkinsn the scenario of the train-from-scratch and in the stage of the fine-tuning between data sources. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.
17#
發(fā)表于 2025-3-24 12:59:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:19:25 | 只看該作者
Book 2019ing factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For?sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper
20#
發(fā)表于 2025-3-25 01:49:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 宜丰县| 天峨县| 兴海县| 汾西县| 兴业县| 四会市| 汕尾市| 栖霞市| 通渭县| 温州市| 达孜县| 合川市| 东丰县| 琼中| 济宁市| 紫云| 沙洋县| 长顺县| 大厂| 大埔县| 塔城市| 蛟河市| 中牟县| 汶川县| 道真| 黔东| 宝坻区| 营口市| 云梦县| 横峰县| 麦盖提县| 南宁市| 南川市| 靖安县| 抚顺市| 桓台县| 吉安市| 禹城市| 大连市| 大名县|