找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI with Python; Leonida Gianfagna,Antonio Di Cecco Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: emanate
21#
發(fā)表于 2025-3-25 06:02:45 | 只看該作者
22#
發(fā)表于 2025-3-25 08:06:48 | 只看該作者
23#
發(fā)表于 2025-3-25 13:21:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:11:30 | 只看該作者
Intrinsic Explainable Models,, XAI can be achieved by looking at the internals with the proper interpretations of the weights and parameters that build the model. We will make practical examples (using Python code) that will deal with the quality of wine, the survival properties in a .-like disaster, and for the ML-addicted the
25#
發(fā)表于 2025-3-25 23:45:15 | 只看該作者
Making Science with Machine Learning and XAI, that . .. We also provided in Table . of Chap. . (don’t worry to look at it now, we will start again from this table in the following) a set of operational criteria based on question to distinguish between interpretability as a lighter form of explainability. As we saw, explainability is able to an
26#
發(fā)表于 2025-3-26 03:21:59 | 只看該作者
Adversarial Machine Learning and Explainability, as shown by Goodfellow et al. (2014), the first one has been classified as a panda by a NN with 55.7% confidence, while the second has been classified by the same NN as a gibbon with 99.3% confidence. What is happening here? The first thoughts are about some mistakes in designing or training the NN
27#
發(fā)表于 2025-3-26 04:20:32 | 只看該作者
28#
發(fā)表于 2025-3-26 12:06:54 | 只看該作者
https://doi.org/10.1007/978-1-4614-4839-6int in this chapter about making science with ML? The answer, long story short, is that explainability is exactly what we need to climb “the ladder of causation” (we will talk about it in a while). We will use XAI in the domain of “knowledge discovery” with a specific focus on scientific knowledge.
29#
發(fā)表于 2025-3-26 15:54:36 | 只看該作者
t is needed in the field, the book details different approaches to XAI depending on specific context and need.? Hands-on work on interpretable models with specific examples leveraging Python are then presented,978-3-030-68639-0978-3-030-68640-6
30#
發(fā)表于 2025-3-26 20:30:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连云港市| 新巴尔虎右旗| 中方县| 长阳| 乐东| 綦江县| 肥乡县| 塘沽区| 洛阳市| 罗田县| 南阳市| 明星| 偃师市| 仲巴县| 孟津县| 镇巴县| 含山县| 雷波县| 公主岭市| 新源县| 勃利县| 云南省| 辽宁省| 太康县| 青海省| 呼和浩特市| 宝丰县| 邛崃市| 景宁| 尉犁县| 繁峙县| 新平| 政和县| 平顺县| 松溪县| 榆社县| 青浦区| 项城市| 常德市| 牙克石市| 荥经县|