找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Experimental IR Meets Multilinguality, Multimodality, and Interaction; 12th International C K. Sel?uk Candan,Bogdan Ionescu,Nicola Ferro Co

[復(fù)制鏈接]
查看: 41805|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:17:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction
副標(biāo)題12th International C
編輯K. Sel?uk Candan,Bogdan Ionescu,Nicola Ferro
視頻videohttp://file.papertrans.cn/319/318848/318848.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Experimental IR Meets Multilinguality, Multimodality, and Interaction; 12th International C K. Sel?uk Candan,Bogdan Ionescu,Nicola Ferro Co
描述This book constitutes the refereed proceedings of the 12th International Conference of the CLEF Association, CLEF 2021, held virtually in September 2021..The conference has a clear focus on experimental information retrieval with special attention to the challenges of multimodality, multilinguality, and interactive search ranging from unstructured to semi structures and structured data...The 11 full papers presented in this volume were carefully reviewed and selected from 21 submissions. This year, the contributions addressed the following challenges: application of neural methods for entity recognition as well as misinformation detection in the health area, skills extraction in job-match databases, stock market prediction using financial news, and extraction of audio features for podcast retrieval...In addition to this, the volume presents 5 “best of the labs” papers which were reviewed as full paper submissions with the same review criteria. 12 lab overview papers were accepted and represent scientific challenges based on new data sets and real world problems in multimodal and multilingual information access..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; computational linguistics; computer vision; data mining; databases; hci; human-co
版次1
doihttps://doi.org/10.1007/978-3-030-85251-1
isbn_softcover978-3-030-85250-4
isbn_ebook978-3-030-85251-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction影響因子(影響力)




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction影響因子(影響力)學(xué)科排名




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction網(wǎng)絡(luò)公開度




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction被引頻次




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction被引頻次學(xué)科排名




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction年度引用




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction年度引用學(xué)科排名




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction讀者反饋




書目名稱Experimental IR Meets Multilinguality, Multimodality, and Interaction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:30:16 | 只看該作者
Comparing Traditional and Neural Approaches for Detecting Health-Related Misinformationformation that is difficult to read. Our results suggest that traditional models are still a strong baseline for these challenging tasks. In the absence of substantive training data, classical approaches tend to outperform BERT-based models.
地板
發(fā)表于 2025-3-22 07:54:28 | 只看該作者
5#
發(fā)表于 2025-3-22 12:33:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:18:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:35 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:41 | 只看該作者
Angela R. Starkweather,Susan G. Dorseyt focus on the fine-grained recognition still lacks. We revisit the previously unfruitful neural approaches to improve recognition performance for the fine-grained entities. In this paper, we test the feasibility and quality of multitask learning (MTL) to improve fine-grained PICO recognition using
9#
發(fā)表于 2025-3-23 03:22:11 | 只看該作者
Anton G. Kutikhin,Arseniy E. Yuzhalinformation that is difficult to read. Our results suggest that traditional models are still a strong baseline for these challenging tasks. In the absence of substantive training data, classical approaches tend to outperform BERT-based models.
10#
發(fā)表于 2025-3-23 08:57:37 | 只看該作者
Sivakumar Sukumaran,Jianming Yuve rounds of growing topics, documents and relevance judgments. The results of our experiments show that the pivot strategy can propose a correct ranking of systems evaluated in an evolving test collection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐平市| 无锡市| 洛浦县| 九江县| 桓台县| 牟定县| 犍为县| 冕宁县| 麻阳| 交口县| 东乌| 乐亭县| 邳州市| 南昌县| 邯郸县| 家居| 石河子市| 哈尔滨市| 大悟县| 巧家县| 天峻县| 孟连| 正镶白旗| 平南县| 自贡市| 含山县| 赣州市| 庐江县| 天气| 华容县| 鹤山市| 双柏县| 敦化市| 莱阳市| 渝北区| 沂水县| 历史| 花垣县| 呼伦贝尔市| 涪陵区| 阿拉尔市|