找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Experimental Algorithms; 14th International S Evripidis Bampis Conference proceedings 2015 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: Embolism
51#
發(fā)表于 2025-3-30 08:26:23 | 只看該作者
Parallel Construction of Succinct Treesstant time. However, their construction time remains a bottleneck. We introduce a practical parallel algorithm that improves the state of the art in succinct tree construction. Given a tree on . nodes stored as a sequence of balanced parentheses, our algorithm builds a succinct tree representation i
52#
發(fā)表于 2025-3-30 13:48:27 | 只看該作者
53#
發(fā)表于 2025-3-30 18:11:39 | 只看該作者
54#
發(fā)表于 2025-3-31 00:35:50 | 只看該作者
Greedily Improving Our Own Centrality in A Networkness or betweenness centrality can have positive impact on the vertex itself: hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. We first prove that this problem does not admit a polynomi
55#
發(fā)表于 2025-3-31 01:41:33 | 只看該作者
An Exact Algorithm for Diameters of Large Real Directed Graphsd for general directed graphs, i.e., it does not assume that given graphs are undirected or strongly connected. Experimental results on large real graphs show that the proposed algorithm is several orders of magnitude faster than the naive approach, and it reveals the exact diameters of large real d
56#
發(fā)表于 2025-3-31 08:27:11 | 只看該作者
Graph Partitioning for Independent Setse the problem. The core innovations of the algorithm are very natural combine operations based on graph partitioning and local search algorithms. More precisely, we employ a state-of-the-art graph partitioner to derive operations that enable us to quickly exchange whole blocks of given independent s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 会昌县| 贵港市| 枣强县| 榆林市| 凤城市| 衡阳市| 宿迁市| 杭锦旗| 格尔木市| 广丰县| 普兰店市| 盘锦市| 拜城县| 安岳县| 通许县| 林西县| 油尖旺区| 同心县| 贵溪市| 大埔区| 牟定县| 开化县| 台中市| 通城县| 木里| 井冈山市| 伊吾县| 琼结县| 全椒县| 溆浦县| 哈巴河县| 忻城县| 景德镇市| 错那县| 久治县| 延吉市| 杭锦旗| 巴林右旗| 九龙县| 平塘县|