找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence Theory for Nonlinear Ordinary Differential Equations; Donal O’Regan Book 1997 Springer Science+Business Media Dordrecht 1997 Bou

[復制鏈接]
樓主: osteomalacia
41#
發(fā)表于 2025-3-28 17:34:28 | 只看該作者
Frost, Drought, and Heat Resistance,blems on the semi-infinite interval. We also remark here that the general theory of nonlinear boundary value problems on the semi-infinite is not very well developed. Most of the results in the literature require rather technical hypothesis and apply only to narrowly defined classes of problems.
42#
發(fā)表于 2025-3-28 22:50:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:57:51 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:28 | 只看該作者
45#
發(fā)表于 2025-3-29 09:21:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:49 | 只看該作者
Impulsive differential equations,impulsive differential equations. In this chapter we present some of the more advanced results to date in the existence theory of nonlinear first order impulsive differential equations with variable times. Let . be a positive integer and . ∈ (0, ∞]. In section 15.3 we establish existence results for the impulsive differential equation (IDE),
47#
發(fā)表于 2025-3-29 19:22:50 | 只看該作者
Book 1997latively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locally or globa
48#
發(fā)表于 2025-3-29 22:51:58 | 只看該作者
49#
發(fā)表于 2025-3-30 03:41:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:59 | 只看該作者
blem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de- fined either locall
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
科技| 梁平县| 手游| 大悟县| 乌鲁木齐县| 时尚| 财经| 宜州市| 永宁县| 平定县| 蓬溪县| 寿宁县| 雷州市| 五原县| 锦州市| 霍林郭勒市| 进贤县| 修水县| 礼泉县| 大厂| 林西县| 仪征市| 吐鲁番市| 武定县| 彭山县| 辽宁省| 贵德县| 紫云| 长泰县| 石渠县| 安化县| 蒙阴县| 亳州市| 阿合奇县| 逊克县| 吐鲁番市| 枣强县| 尤溪县| 梁河县| 新兴县| 长春市|