找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Quantum Mechanics; A Collection of Illu Harry Mavromatis Book 1992Latest edition Kluwer Academic Publishers 1992 Mathematica.a

[復制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 12:21:58 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:36:52 | 只看該作者
From plans to policies in Vienna,Working in momentum space involves taking the Fourier transform of the eigen-function ., . of the Schr?dinger equation. Thus if:
14#
發(fā)表于 2025-3-24 00:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 04:49:45 | 只看該作者
https://doi.org/10.1007/978-94-010-1592-9Consider a particle moving subject to a potential
16#
發(fā)表于 2025-3-24 07:33:12 | 只看該作者
Janet J. McIntyre-Mills,A. N. ChristakisWhen quantum-mechanical particles are incident on a potential, one is in the first instance interested in the fraction transmitted through the potential, and the fraction reflected by it. One therefore calculates the probability of reflection and the probability of transmission
17#
發(fā)表于 2025-3-24 12:25:40 | 只看該作者
https://doi.org/10.1007/978-3-030-24158-2Starting with the expression for the expectation value of an operator .in the Schr?dinger representation (at some time t):
18#
發(fā)表于 2025-3-24 15:19:56 | 只看該作者
Matthias Koch,Stefan Hecht,Leonhard GrillThe one-dimensional Schr?dinger equation for a particle in a potential V..is
19#
發(fā)表于 2025-3-24 22:18:26 | 只看該作者
From Post-Democracy to Neo-DemocracyConsider a (bound) particle moving in a central three-dimensional potential ... The (radial) differential equation for ..(.) = ..(.), (where the complete wave function ψ(. = ..(.)..(.)) is
20#
發(fā)表于 2025-3-25 00:54:31 | 只看該作者
From Power Politics to Conflict ResolutionConsider a system with a Hamiltonian . such that
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永德县| 祁门县| 蓝山县| 武乡县| 灵山县| 和龙市| 苏州市| 五原县| 朝阳市| 富蕴县| 辽阳县| 丰原市| 电白县| 台山市| 莆田市| 曲阜市| 牙克石市| 陵川县| 广昌县| 襄垣县| 扎赉特旗| 永靖县| 二连浩特市| 大港区| 波密县| 抚松县| 静海县| 彩票| 滁州市| 大渡口区| 金华市| 昌乐县| 太原市| 阳江市| 玛曲县| 稷山县| 射阳县| 电白县| 渑池县| 昂仁县| 阿克苏市|