找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Quantum Mechanics; A Collection of Illu Harry Mavromatis Book 1992Latest edition Kluwer Academic Publishers 1992 Mathematica.a

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 12:21:58 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:36:52 | 只看該作者
From plans to policies in Vienna,Working in momentum space involves taking the Fourier transform of the eigen-function ., . of the Schr?dinger equation. Thus if:
14#
發(fā)表于 2025-3-24 00:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 04:49:45 | 只看該作者
https://doi.org/10.1007/978-94-010-1592-9Consider a particle moving subject to a potential
16#
發(fā)表于 2025-3-24 07:33:12 | 只看該作者
Janet J. McIntyre-Mills,A. N. ChristakisWhen quantum-mechanical particles are incident on a potential, one is in the first instance interested in the fraction transmitted through the potential, and the fraction reflected by it. One therefore calculates the probability of reflection and the probability of transmission
17#
發(fā)表于 2025-3-24 12:25:40 | 只看該作者
https://doi.org/10.1007/978-3-030-24158-2Starting with the expression for the expectation value of an operator .in the Schr?dinger representation (at some time t):
18#
發(fā)表于 2025-3-24 15:19:56 | 只看該作者
Matthias Koch,Stefan Hecht,Leonhard GrillThe one-dimensional Schr?dinger equation for a particle in a potential V..is
19#
發(fā)表于 2025-3-24 22:18:26 | 只看該作者
From Post-Democracy to Neo-DemocracyConsider a (bound) particle moving in a central three-dimensional potential ... The (radial) differential equation for ..(.) = ..(.), (where the complete wave function ψ(. = ..(.)..(.)) is
20#
發(fā)表于 2025-3-25 00:54:31 | 只看該作者
From Power Politics to Conflict ResolutionConsider a system with a Hamiltonian . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 湘乡市| 门源| 乌鲁木齐县| 屏东市| 中宁县| 清流县| 绍兴市| 昌邑市| 平凉市| 长岭县| 曲靖市| 枣强县| 静海县| 丰镇市| 南宫市| 西城区| 黄骅市| 青河县| 广汉市| 博兴县| 江口县| 含山县| 左云县| 莱西市| 龙井市| 磐石市| 左贡县| 合水县| 恩施市| 正镶白旗| 靖宇县| 垫江县| 横山县| 电白县| 昌图县| 宕昌县| 靖远县| 九龙坡区| 乌恰县| 安福县|