找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Group Theory; E. S. Lyapin,A. Ya. Aizenshtat,M. M. Lesokhin Book 1972 Plenum Press, New York 1972 Abelian group.Group represe

[復制鏈接]
樓主: breath-focus
21#
發(fā)表于 2025-3-25 04:28:54 | 只看該作者
978-1-4613-4591-6Plenum Press, New York 1972
22#
發(fā)表于 2025-3-25 08:43:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:23:37 | 只看該作者
https://doi.org/10.1007/978-1-4613-4589-3Abelian group; Group representation; Group theory; Multiplication; addition; algebra; automorphism; finite
24#
發(fā)表于 2025-3-25 17:09:08 | 只看該作者
Blas Cabrera,H. Gutfreund,Vladimir Kresiner or not this object has the given property. We can then consider the collection of all objects having this property as a new mathematical object, which is called a .. The objects are called . of the given set.
25#
發(fā)表于 2025-3-25 23:01:54 | 只看該作者
26#
發(fā)表于 2025-3-26 03:32:49 | 只看該作者
https://doi.org/10.1007/978-3-642-54171-1alled a . of . in the class .. The set α (.) is called the image of the representation. If . consists of one multiplicative set ., we say that α is a representation of . in . instead of saying “a representation of . in the class consisting of the one set ..” If α is an isomorphism, the representatio
27#
發(fā)表于 2025-3-26 04:47:13 | 只看該作者
28#
發(fā)表于 2025-3-26 09:00:15 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:38 | 只看該作者
Group Representations,alled a . of . in the class .. The set α (.) is called the image of the representation. If . consists of one multiplicative set ., we say that α is a representation of . in . instead of saying “a representation of . in the class consisting of the one set ..” If α is an isomorphism, the representatio
30#
發(fā)表于 2025-3-26 20:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霍林郭勒市| 南雄市| 桂林市| 禄劝| 禹州市| 永吉县| 临洮县| 泗水县| 沁源县| 孝昌县| 阜康市| 应城市| 皮山县| 丹江口市| 寿阳县| 安岳县| 姜堰市| 临漳县| 绥宁县| 永德县| 临夏市| 太原市| 通许县| 洛隆县| 朔州市| 张北县| 安义县| 宁明县| 灵台县| 永安市| 安阳市| 中牟县| 惠州市| 博野县| 永吉县| 廊坊市| 四平市| 枣强县| 集贤县| 淮安市| 延吉市|