找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 3; The February Fourier Radu Balan,Matthew J. Begué,Kasso A. Okoudjou Book 2015 Springer Internatio

[復(fù)制鏈接]
樓主: adulation
41#
發(fā)表于 2025-3-28 15:22:54 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:46 | 只看該作者
43#
發(fā)表于 2025-3-28 23:40:00 | 只看該作者
Ian Dempsey,Michael O’Neill,Anthony Brabazonuid particle trajectories and this measurement is used to identify Lagrangian coherent structures in the flow. Results for both idealized and realistic ocean flows are compared and contrasted with other methods for identifying coherent structures. Other possible applications for the technique are also discussed.
44#
發(fā)表于 2025-3-29 04:47:03 | 只看該作者
Test-Driven Development and Impostors,ates of a finite number of functions in terms of properties of the associated Gramian matrix. In some cases, the results are not a straightforward generalization of the case when a single function is considered.
45#
發(fā)表于 2025-3-29 08:19:24 | 只看該作者
Foundations of Atmospheric Remote Sensingnd zero magnitude at . points. The design takes place in Zak space. The use of Zak space setting enables selection of a desirable Fourier transform zero placement, reduces computations, and links the Golay sequence design with the design of perfect sequences.
46#
發(fā)表于 2025-3-29 13:08:11 | 只看該作者
47#
發(fā)表于 2025-3-29 18:25:35 | 只看該作者
Hodge-de Rham Theory of K-Forms on Carpet Type FractalsC we observe a Poincare type duality between the Laplacian on 0-forms and 2-forms. On the other hand, on SC the Laplacian on 2-forms appears to be an operator with continuous (as opposed to discrete) spectrum. 2010 . Primary: 28A80
48#
發(fā)表于 2025-3-29 21:25:43 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:02:52 | 只看該作者
Theories of Aversive Control of Behavior, properties in the time–frequency plane. Advanced time–frequency signal processing techniques are then applied for estimating antigenic determinants or epitope candidates for detecting and identifying potential pathogens.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
申扎县| 安阳市| 马山县| 巫溪县| 阜南县| 龙州县| 壶关县| 原平市| 横山县| 固阳县| 万宁市| 克什克腾旗| 台东市| 荃湾区| 内乡县| 苏尼特左旗| 泰来县| 汶川县| 安溪县| 西青区| 当阳市| 苏尼特右旗| 合肥市| 武宣县| 黑龙江省| 磐石市| 永兴县| 正蓝旗| 曲靖市| 泰宁县| 开封市| 佛教| 崇明县| 北流市| 夏津县| 敦煌市| 营口市| 株洲县| 墨脱县| 黄浦区| 东宁县|