找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 1; The February Fourier Travis D. Andrews,Radu Balan,Kasso A. Okoudjou Book 2013 Springer Science+B

[復(fù)制鏈接]
樓主: 本義
21#
發(fā)表于 2025-3-25 07:12:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:35:05 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:19 | 只看該作者
25#
發(fā)表于 2025-3-25 22:46:33 | 只看該作者
Inverse Kinematics: Dragging and Reachingon of similar types of fusion frames is even less developed. We construct a large family of equi-isoclinic Parseval fusion frames by taking the Naimark complement of the union of orthonormal bases. If these bases are chosen to be mutually unbiased, then the resulting fusion frame subspaces are spann
26#
發(fā)表于 2025-3-26 03:09:14 | 只看該作者
27#
發(fā)表于 2025-3-26 05:50:02 | 只看該作者
https://doi.org/10.1007/978-1-4302-3877-5ions on smooth extension of functions. Those questions have been answered in the last few years, thanks to the work of Bierstone et al. (Inventiones Math. 151(2):329–352, 2003), Brudnyi and Shvartsman (Int. Math. Res. Notices 3:129–139, 1994; J. Geomet. Anal. 7(4):515–574, 1997), Fefferman (Ann. Mat
28#
發(fā)表于 2025-3-26 12:31:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:30 | 只看該作者
Mac Graphics and Design Issues,is an orbit . of a countable abelian group . acting continuously on ., and each .∈. is the sum of the terms ., .. Such a recovery formula generalizes the well-known Shannon sampling formula. This chapter presents a general discussion of sampling theory and introduces several new classes of sampling
30#
發(fā)表于 2025-3-26 19:13:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盱眙县| 衢州市| 明水县| 乌兰察布市| 昌吉市| 凯里市| 夹江县| 厦门市| 南丰县| 陕西省| 海城市| 连州市| 全南县| 丰台区| 陆丰市| 肃南| 区。| 左权县| 开远市| 东乡族自治县| 太仓市| 镇宁| 尉犁县| 阳曲县| 揭西县| 广宗县| 京山县| 通海县| 佳木斯市| 龙门县| 泽普县| 昆山市| 新建县| 太康县| 那曲县| 太保市| 浪卡子县| 东辽县| 钦州市| 镇原县| 寻甸|