找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Solutions and Scalar Fields in Gravity; Recent Developments Alfredo Macias,Jorge L. Cervantes-Cota,Claus L?mme Book 2001 Springer Sci

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:03:34 | 只看該作者
Feedback Control Theory for Engineersgth .. Here we basically present, after a short introduction into MAG and its triplet subcase, the results of earlier joint work with García, Macías, and Socorro [1]. Our solution is based on an exact solution of Ozsváth, Robinson, and Rózga describing type N gravitational fields in general relativity as coupled to electromagnetic null-fields.
12#
發(fā)表于 2025-3-23 15:11:24 | 只看該作者
Feed-in tariffs in the European Unionisk has been “continued” to Einstein’s theory of gravitation [1, 2, 3]..After an introduction into these developments, the parametric collapse to a rotating black hole and possible generalizations are discussed.
13#
發(fā)表于 2025-3-23 21:26:09 | 只看該作者
14#
發(fā)表于 2025-3-24 01:44:10 | 只看該作者
Discussion of the Theta Formula for the Ernst Potential of the Rigidly Rotating Disk of Dustrelated to a Riemann surface..The solution is reformulated so as to make it easier to handle and all integrals are transformed into definite real integrals. For the axis of symmetry and the plane of the disk these general formulae can be reduced to standard elliptic functions and elliptic integrals.
15#
發(fā)表于 2025-3-24 03:19:44 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:23 | 只看該作者
A Plane-Fronted Wave Solution in Metric-Affine Gravitygth .. Here we basically present, after a short introduction into MAG and its triplet subcase, the results of earlier joint work with García, Macías, and Socorro [1]. Our solution is based on an exact solution of Ozsváth, Robinson, and Rózga describing type N gravitational fields in general relativity as coupled to electromagnetic null-fields.
17#
發(fā)表于 2025-3-24 10:41:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:28:22 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:24 | 只看該作者
20#
發(fā)表于 2025-3-25 02:58:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
礼泉县| 遵化市| 青阳县| 连山| 确山县| 木里| 隆化县| 阿尔山市| 启东市| 新晃| 汨罗市| 饶河县| 湟源县| 扶沟县| 疏附县| 连城县| 九台市| 宣威市| 洪湖市| 安顺市| 漳州市| 乐都县| 望都县| 沂南县| 镇巴县| 江阴市| 沙坪坝区| 河间市| 大余县| 都江堰市| 新巴尔虎左旗| 若羌县| 淳化县| 乡宁县| 休宁县| 麦盖提县| 文安县| 琼海市| 商水县| 丹凤县| 宁强县|