找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; Third International Carlos A. Coello Coello,Arturo Hernández Aguirre,E Conference proceedings 2

[復制鏈接]
樓主: 偏差
51#
發(fā)表于 2025-3-30 10:02:57 | 只看該作者
52#
發(fā)表于 2025-3-30 16:13:29 | 只看該作者
Recombination of Similar Parents in EMO Algorithms flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations through computational experiments with various specifications of
53#
發(fā)表于 2025-3-30 19:08:55 | 只看該作者
https://doi.org/10.1007/978-94-017-8709-3imed at improving the speed of convergence beyond a parallel island MOEA with migration. We also suggest a clustering based parallelization scheme for MOEAs and compare it to several alternative MOEA parallelization schemes on multiple standard multi-objective test functions.
54#
發(fā)表于 2025-3-30 22:13:32 | 只看該作者
55#
發(fā)表于 2025-3-31 02:34:57 | 只看該作者
A realistic role for experiment of the Pareto set. Then, we present an original hybridization with Path Relinking algorithm, in order to intensify the search between solutions obtained by the first approach. Results obtained are promising and show that cooperation between these optimization methods could be efficient for Pareto optimization.
56#
發(fā)表于 2025-3-31 07:53:40 | 只看該作者
G. Rossi,G. Madrussani,A. L. Vesnaverg initial populations into existing MOEAs based on so-called Pareto-Front-Arithmetics (PFA). We will provide experimental results from the field of embedded system synthesis that show the effectiveness of our proposed methodology.
57#
發(fā)表于 2025-3-31 12:30:58 | 只看該作者
58#
發(fā)表于 2025-3-31 17:22:58 | 只看該作者
59#
發(fā)表于 2025-3-31 20:45:53 | 只看該作者
An Efficient Multi-objective Evolutionary Algorithm: OMOEA-IIrove the performance in robusticity without degrading precision and distribution of solutions. Experimental results show that OMOEA-II can solve problems with high dimensions and large number of local Pareto-optimal fronts better than some existing algorithms recently reported in the literatures.
60#
發(fā)表于 2025-3-31 22:40:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
通河县| 屯昌县| 宜兴市| 汝城县| 科技| 将乐县| 亳州市| 威宁| 兴文县| 荥经县| 玛纳斯县| 铜山县| 桐梓县| 呼伦贝尔市| 宣汉县| 鄂伦春自治旗| 佛山市| 佛教| 光山县| 息烽县| 怀仁县| 阳朔县| 汽车| 刚察县| 延寿县| 厦门市| 金乡县| 平湖市| 渝中区| 湾仔区| 桦甸市| 东至县| 龙南县| 开平市| 麻阳| 宜兰市| 环江| 城固县| 澄江县| 呈贡县| 随州市|