找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Learning: Advances in Theories and Algorithms; Zhi-Hua Zhou,Yang Yu,Chao Qian Book 2019 Springer Nature Singapore Pte Ltd. 20

[復(fù)制鏈接]
查看: 41340|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:24:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms
編輯Zhi-Hua Zhou,Yang Yu,Chao Qian
視頻videohttp://file.papertrans.cn/318/317970/317970.mp4
概述Presents theoretical results for evolutionary learning.Provides general theoretical tools for analysing evolutionary algorithms.Proposes evolutionary learning algorithms with provable theoretical guar
圖書(shū)封面Titlebook: Evolutionary Learning: Advances in Theories and Algorithms;  Zhi-Hua Zhou,Yang Yu,Chao Qian Book 2019 Springer Nature Singapore Pte Ltd. 20
描述.Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches.? ??.Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary opt
出版日期Book 2019
關(guān)鍵詞Artificial intelligence; Machine Learning; Evolutionary Learning; Evolutionary Algorithms; Evolutionary
版次1
doihttps://doi.org/10.1007/978-981-13-5956-9
isbn_ebook978-981-13-5956-9
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms影響因子(影響力)




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms影響因子(影響力)學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms被引頻次




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms被引頻次學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms年度引用




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms年度引用學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms讀者反饋




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:44 | 只看該作者
Existence: Semantics and Syntaxhe original constrained optimization problem into a bi-objective optimization problem, is probably better than the commonly employed penalty method and the greedy method. Its effectiveness is moreover verified in machine learning tasks.
板凳
發(fā)表于 2025-3-22 03:58:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:30 | 只看該作者
Constrained Optimizationhe original constrained optimization problem into a bi-objective optimization problem, is probably better than the commonly employed penalty method and the greedy method. Its effectiveness is moreover verified in machine learning tasks.
5#
發(fā)表于 2025-3-22 12:45:42 | 只看該作者
6#
發(fā)表于 2025-3-22 15:45:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:45:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:25:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:39 | 只看該作者
https://doi.org/10.1007/978-94-007-4207-9helpful, while for easy problems, it can be harmful. The findings are verified in the experiments. We also prove that the two common strategies, i.e., threshold selection and sampling, can bring robustness against noise when it is harmful.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 西吉县| 长武县| 屏山县| 依安县| 赣州市| 东方市| 阳泉市| 车致| 九台市| 松江区| 淮安市| 乌兰浩特市| 平阴县| 内乡县| 滕州市| 和龙市| 天镇县| 东乌珠穆沁旗| 台北市| 合作市| 喜德县| 大新县| 海门市| 栾城县| 固原市| 抚松县| 普兰县| 珠海市| 宁武县| 咸阳市| 新宁县| 柳河县| 东兰县| 嘉鱼县| 酉阳| 分宜县| 房产| 蓬安县| 睢宁县| 沅江市|