找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 10th European Confer Mario Giacobini,Leonardo Vanneschi,Willi

[復(fù)制鏈接]
查看: 27237|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:29:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
副標(biāo)題10th European Confer
編輯Mario Giacobini,Leonardo Vanneschi,William S. Bush
視頻videohttp://file.papertrans.cn/318/317897/317897.mp4
概述Fast track conference proceedings.Unique visibility.State of the art research
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 10th European Confer Mario Giacobini,Leonardo Vanneschi,Willi
描述This book constitutes the refereed proceedings of the 10th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2012, held in Málaga, Spain, in April 2012 co-located with the Evo* 2012 events. .The 15 revised full papers presented together with 8 poster papers were carefully reviewed and selected from numerous submissions. Computational Biology is a wide and varied discipline, incorporating aspects of statistical analysis, data structure and algorithm design, machine learning, and mathematical modeling toward the processing and improved understanding of biological data. Experimentalists now routinely generate new information on such a massive scale that the techniques of computer science are needed to establish any meaningful result. As a consequence, biologists now face the challenges of algorithmic complexity and tractability, and combinatorial explosion when conducting even basic analyses.
出版日期Conference proceedings 2012
關(guān)鍵詞artificial immune system; evolutionary algorithm; genetic programming; neural networks; swarm intelligen
版次1
doihttps://doi.org/10.1007/978-3-642-29066-4
isbn_softcover978-3-642-29065-7
isbn_ebook978-3-642-29066-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡(luò)公開度




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:38:19 | 只看該作者
Andrew Parsons,Helene Wilkinsonesearch problem in systems biology. In this review, recent graph-based approaches to clustering protein interaction networks are described and classified with respect to common peculiarities. The goal is that of providing a useful guide and reference for both computer scientists and biologists.
地板
發(fā)表于 2025-3-22 05:10:14 | 只看該作者
Automatic Task Decomposition for the NeuroEvolution of Augmenting Topologies (NEAT) Algorithmlgorithm for evolving MFFN architectures based on the NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The algorithm proposed here, denoted MFF-NEAT, outlines an approach to automatically evolving, attributing fitness values and combining the task specific networks in a principled manner.
5#
發(fā)表于 2025-3-22 08:46:00 | 只看該作者
6#
發(fā)表于 2025-3-22 13:26:52 | 只看該作者
Complex Detection in Protein-Protein Interaction Networks: A Compact Overview for Researchers and Presearch problem in systems biology. In this review, recent graph-based approaches to clustering protein interaction networks are described and classified with respect to common peculiarities. The goal is that of providing a useful guide and reference for both computer scientists and biologists.
7#
發(fā)表于 2025-3-22 18:27:34 | 只看該作者
0302-9743 pean Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2012, held in Málaga, Spain, in April 2012 co-located with the Evo* 2012 events. .The 15 revised full papers presented together with 8 poster papers were carefully reviewed and selected from numer
8#
發(fā)表于 2025-3-22 23:26:53 | 只看該作者
Palgrave Studies in European Union Politicsal parameters and large scale climate indices. The performed simulations identify a set of relevant ecological drivers and highlight the non linear dynamics of the Copepod variability. These results indicate GP to be a promising approach for understanding the long term variability of marine populations.
9#
發(fā)表于 2025-3-23 05:19:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:42:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潍坊市| 莒南县| 周口市| 洞头县| 读书| 桐乡市| 大田县| 临颍县| 郎溪县| 惠州市| 安丘市| 元谋县| 乌恰县| 忻州市| 宣汉县| 郎溪县| 台前县| 承德市| 比如县| 万年县| 文安县| 黑水县| 烟台市| 西林县| 平乡县| 苍梧县| 利津县| 罗田县| 峨眉山市| 夏邑县| 黄大仙区| 清镇市| 富平县| 舒兰市| 遂平县| 道真| 宿迁市| 叙永县| 民乐县| 沧州市| 河间市|