找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation in Data Mining; Ashish Ghosh,Lakhmi C. Jain Book 2005 Springer-Verlag Berlin Heidelberg 2005 Data mining.Evolutio

[復(fù)制鏈接]
樓主: crusade
41#
發(fā)表于 2025-3-28 15:52:20 | 只看該作者
Multi-Agent Data Mining using Evolutionary Computing,gorithms that build feature-vector-based classifiers in the form of rule sets. With the tremendous explosion in the amount of data being amassed by organizations of today, it is critically important that data mining techniques are able to process such data efficiently. We present the Distributed Lea
42#
發(fā)表于 2025-3-28 22:36:17 | 只看該作者
43#
發(fā)表于 2025-3-28 23:22:17 | 只看該作者
44#
發(fā)表于 2025-3-29 05:42:12 | 只看該作者
Diversity and Neuro-Ensemble,ns. It has been shown that combining different neural networks can improve the generalization ability of learning machines. Diversity of the ensemble’s members plays a key role in minimizing the combined bias and variance of the ensemble. In this chapter, we compare between different mechanisms and
45#
發(fā)表于 2025-3-29 10:28:25 | 只看該作者
Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets,ionary techniques have been used with success as global searchers in difficult problems, particularly in the optimization of non-differentiable functions. Hence, they can improve clustering. However, existing . clustering techniques suffer from one or more of the following shortcomings: (i) they are
46#
發(fā)表于 2025-3-29 12:52:49 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:16 | 只看該作者
48#
發(fā)表于 2025-3-29 23:12:09 | 只看該作者
Microarray Data Mining with Evolutionary Computation,umber of gene expressions coupled with analysis over a time course, provides an immense space of possible relations. Some small portion of this space contains information that is of extreme value to modern biomedicine in terms of proper diagnosis and treatment of many diseases. Classical methods of
49#
發(fā)表于 2025-3-30 01:18:24 | 只看該作者
50#
發(fā)表于 2025-3-30 06:11:46 | 只看該作者
https://doi.org/10.1057/9780230306851ion systems from the view point of its components. Then we propose a decompositional rule extraction method based on RBF neural networks. In the proposed rule extraction method, rules are extracted from trained RBF neural networks with class-dependent features. GA is used to determine the feature su
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 保亭| 霍林郭勒市| 靖西县| 沁源县| 弥渡县| 防城港市| 肥城市| 岑溪市| 福安市| 兖州市| 钦州市| 工布江达县| 樟树市| 布尔津县| 界首市| 景泰县| 肥城市| 临颍县| 天水市| 顺义区| 晴隆县| 抚宁县| 淮滨县| 济南市| 彝良县| 子洲县| 石嘴山市| 济南市| 磐安县| 盐津县| 措美县| 富源县| 湟源县| 临海市| 迁安市| 沧州市| 海阳市| 临武县| 湖南省| 嵊州市|