找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Processes and the Feynman-Kac Formula; Brian Jefferies Book 1996 Springer Science+Business Media Dordrecht 1996 Feynman-Kac form

[復(fù)制鏈接]
樓主: EXTRA
11#
發(fā)表于 2025-3-23 10:19:20 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:26 | 只看該作者
Feynman-Kac Formulae,igroup of continuous linear operators acting on . and that .: . → .(.) is a spectral measure, so that . is a .-additive (.)-process. Recall that this means that for each . ≥ 0, ..: .. → ?(.) is a .-additive set function defined on a .-algebra .. of subsets of Ω containing the collection ..{.} of all
13#
發(fā)表于 2025-3-23 19:05:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:37 | 只看該作者
Some Bounded Evolution Processes,y with transition functions for probabilistic Markov processes. In practice, it is simpler to work with semigroups of linear operators directly, but for the purpose of making the exposition more complete, the technique is outlined in Sections 1 and 2.
16#
發(fā)表于 2025-3-24 08:26:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:55 | 只看該作者
The Radial Dirac Process,l operators .., . = ±1, ±2,..., acting on ..((0, ∞); ?.). The first order part of .. looks similar to the generator of the direct sum of translations in each component of . ∈ ..((0, ∞); ?.). The part of order zero has a 1/.-singularity at . = 0.
18#
發(fā)表于 2025-3-24 14:55:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:16 | 只看該作者
Sebastian Robert,Achim Hendriks measured by a collection of operator valued set functions that may or may not be .-additive. Typically, the set functions are constructed from a semigroup representing the undisturbed evolution of a system, and a spectral measure by which perturbations are implemented.
20#
發(fā)表于 2025-3-25 01:44:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
即墨市| 永清县| 家居| 保定市| 广平县| 剑河县| 湟中县| 读书| 宿松县| 奉贤区| 从江县| 开平市| 涪陵区| 东乌珠穆沁旗| 靖江市| 巴楚县| 聊城市| 杂多县| 万盛区| 故城县| 上虞市| 汤阴县| 正安县| 绥德县| 太湖县| 阜新市| 梅河口市| 通州区| 长乐市| 宁明县| 孟村| 浙江省| 安陆市| 石首市| 驻马店市| 南江县| 千阳县| 泽普县| 清水县| 新竹县| 沈阳市|