找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Equations of Hyperbolic and Schr?dinger Type; Asymptotics, Estimat Michael Ruzhansky,Mitsuru Sugimoto,Jens Wirth Book 2012 Spring

[復(fù)制鏈接]
樓主: Addiction
21#
發(fā)表于 2025-3-25 07:18:22 | 只看該作者
Local in Space Energy Estimates for Second-order Hyperbolic Equations,The second part of the paper is devoted to the Cauchy problem for the second-order linear hyperbolic equations. For these equations, we are in the position to get an energy estimate along the cones of determinacy, which will imply, for the corresponding semilinear equations, the analytic propagation
22#
發(fā)表于 2025-3-25 08:59:30 | 只看該作者
The Final Problem on the Optimality of the General Theory for Nonlinear Wave Equations,
23#
發(fā)表于 2025-3-25 14:45:40 | 只看該作者
Evolution Equations of Hyperbolic and Schr?dinger TypeAsymptotics, Estimat
24#
發(fā)表于 2025-3-25 16:57:57 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:50 | 只看該作者
26#
發(fā)表于 2025-3-26 02:53:10 | 只看該作者
What Happens in the Start-up Process?,lar, we focus on Schr?dinger-type FIOs, showing that Gabor frames provide optimally sparse representations of such operators. Using Maple software, new numerical examples for the Harmonic Oscillator are provided.
27#
發(fā)表于 2025-3-26 05:07:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:36:25 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:52 | 只看該作者
Evolution Equations of Hyperbolic and Schr?dinger Type978-3-0348-0454-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
30#
發(fā)表于 2025-3-26 18:29:52 | 只看該作者
https://doi.org/10.1007/978-3-319-75907-4cients . are assumed to be bounded and . is assumed to be uniformly elliptic and to coincide with ?? outside of a ball. A Limiting Absorption Principle (LAP) is proved in the framework of weighted Sobolev spaces. It is then used for (i) A general eigenfunction expansion theorem and (ii) Global space
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏山县| 濮阳市| 贡山| 从江县| 丰顺县| 陇川县| 普定县| 宁津县| 顺平县| 怀仁县| 萨迦县| 玉环县| 奇台县| 新乡市| 五河县| 腾冲县| 台安县| 桂阳县| 玛纳斯县| 曲阳县| 定远县| 浏阳市| 清徐县| 都匀市| 英超| 克东县| 岳阳县| 白水县| 林口县| 中牟县| 罗定市| 浑源县| 康乐县| 万荣县| 平顺县| 灯塔市| 朝阳市| 乐东| 朝阳县| 高尔夫| 昭通市|