找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: European Congress of Mathematics; Budapest, July 22–26 A. Balog,G. O. H. Katona,D. Sza’sz Conference proceedings 1998 Springer Basel AG 199

[復(fù)制鏈接]
樓主: 烹飪
41#
發(fā)表于 2025-3-28 16:30:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:34 | 只看該作者
43#
發(fā)表于 2025-3-29 00:16:18 | 只看該作者
44#
發(fā)表于 2025-3-29 05:38:18 | 只看該作者
Surprising Geometric Phenomena in High-Dimensional Convexity Theory bodies, and analyze their unexpected asymptotic behavior as the dimension increases to infinity. The underlying methods use different mathematical tools and are useful in a variety of apparently unrelated mathematical areas.
45#
發(fā)表于 2025-3-29 09:46:04 | 只看該作者
Microstructures, Phase Transitions and Geometryaximum or minimum permeability, … ). Some materials can change their internal microstructure and hence their properties in response to external influences. They are sometimes referred to as ‘smart materials’and are of great technological interest.
46#
發(fā)表于 2025-3-29 15:26:28 | 只看該作者
47#
發(fā)表于 2025-3-29 16:34:46 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:31 | 只看該作者
Huygens’ Principle and Integrabilityut it was Jacques Hadamard [1], who was the first to propose in 1923 a rigorous mathematical definition of the phenomenon he called .. This is the meaning of the term “Huygens’ Principle” (or, in short, HP) we use in this paper.
49#
發(fā)表于 2025-3-30 01:23:14 | 只看該作者
https://doi.org/10.1007/978-3-662-33064-7everal areas of mathematics and theoretical computer science. Here we concentrate on applications in discrepancy theory, in combinatorial geometry, in derandomization of geometric algorithms, and in geometric range searching. We believe that the tools described might be useful in other areas of mathematics too.
50#
發(fā)表于 2025-3-30 05:16:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德令哈市| 宣武区| 长海县| 那曲县| 景泰县| 五峰| 镇巴县| 瑞昌市| 北碚区| 新泰市| 金山区| 四子王旗| 左贡县| 余干县| 斗六市| 金溪县| 会昌县| 丁青县| 翁牛特旗| 永德县| 西乌珠穆沁旗| 岫岩| 望奎县| 会理县| 黄大仙区| 安溪县| 云南省| 渭源县| 灌阳县| 开平市| 昌宁县| 北流市| 巴中市| 建始县| 日照市| 汪清县| 搜索| 隆化县| 桐城市| 柘城县| 阿城市|