找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: European Congress of Mathematics; Budapest, July 22–26 A. Balog,G. O. H. Katona,D. Sza’sz Conference proceedings 1998 Springer Basel AG 199

[復(fù)制鏈接]
樓主: 烹飪
41#
發(fā)表于 2025-3-28 16:30:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:34 | 只看該作者
43#
發(fā)表于 2025-3-29 00:16:18 | 只看該作者
44#
發(fā)表于 2025-3-29 05:38:18 | 只看該作者
Surprising Geometric Phenomena in High-Dimensional Convexity Theory bodies, and analyze their unexpected asymptotic behavior as the dimension increases to infinity. The underlying methods use different mathematical tools and are useful in a variety of apparently unrelated mathematical areas.
45#
發(fā)表于 2025-3-29 09:46:04 | 只看該作者
Microstructures, Phase Transitions and Geometryaximum or minimum permeability, … ). Some materials can change their internal microstructure and hence their properties in response to external influences. They are sometimes referred to as ‘smart materials’and are of great technological interest.
46#
發(fā)表于 2025-3-29 15:26:28 | 只看該作者
47#
發(fā)表于 2025-3-29 16:34:46 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:31 | 只看該作者
Huygens’ Principle and Integrabilityut it was Jacques Hadamard [1], who was the first to propose in 1923 a rigorous mathematical definition of the phenomenon he called .. This is the meaning of the term “Huygens’ Principle” (or, in short, HP) we use in this paper.
49#
發(fā)表于 2025-3-30 01:23:14 | 只看該作者
https://doi.org/10.1007/978-3-662-33064-7everal areas of mathematics and theoretical computer science. Here we concentrate on applications in discrepancy theory, in combinatorial geometry, in derandomization of geometric algorithms, and in geometric range searching. We believe that the tools described might be useful in other areas of mathematics too.
50#
發(fā)表于 2025-3-30 05:16:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘谷县| 兴义市| 休宁县| 西平县| 怀来县| 曲阜市| 金昌市| 桐城市| 乡宁县| 福海县| 龙陵县| 安乡县| 邵武市| 哈尔滨市| 尉氏县| 友谊县| 卓资县| 绥滨县| 基隆市| 温泉县| 那曲县| 孝感市| 岢岚县| 乌拉特前旗| 如皋市| 高要市| 西青区| 锡林郭勒盟| 崇礼县| 射阳县| 平塘县| 应城市| 眉山市| 沿河| 禹州市| 宜兰县| 岳阳市| 肃南| 富阳市| 太和县| 日土县|