找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eulerian Numbers; T. Kyle Petersen Textbook 2015 Springer Science+Business Media New York 2015 Catalan numbers.Coxeter groups.Eulerian num

[復(fù)制鏈接]
樓主: Taft
21#
發(fā)表于 2025-3-25 06:33:43 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:41 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:28 | 只看該作者
https://doi.org/10.1007/978-3-7091-9922-0In this supplemental chapter we will find the Eulerian numbers cropping up in some surprising places.
24#
發(fā)表于 2025-3-25 18:11:36 | 只看該作者
Institutsgeschichte als Familiengeschichte?. have arisen is in combinatorial topology. In this chapter we will put some of our previous work in the context of the study of simplicial complexes. While there is some assumed familiarity with topological concepts, no formal topological background is required for understanding this chapter.
25#
發(fā)表于 2025-3-25 21:47:32 | 只看該作者
https://doi.org/10.1007/978-3-658-06970-4. in geometry and topology. It is an operation that preserves topology and is well-behaved combinatorially. In this chapter we will study a transformation of Brenti and Welker that maps the .-vector of a complex to the .-vector of its barycentric subdivision.
26#
發(fā)表于 2025-3-26 01:22:15 | 只看該作者
27#
發(fā)表于 2025-3-26 04:31:37 | 只看該作者
28#
發(fā)表于 2025-3-26 11:23:22 | 只看該作者
Eulerian numbers. of numbers a typical mathematics student encounters is Pascal’s triangle, shown in Table?1.1. It has many beautiful properties, some of which we will review shortly. One of the main points of this chapter is to argue that the array of Eulerian numbers is just as interesting as Pascal’s triangle.
29#
發(fā)表于 2025-3-26 13:14:16 | 只看該作者
Refined enumeration. Often, the way we count allows us to keep track of more than one permutation statistic without any extra effort. In particular we consider various ways to pair a statistic with an Eulerian distribution with another statistic having a Mahonian distribution. Similar ideas are explored for Catalan objects.
30#
發(fā)表于 2025-3-26 18:47:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 邻水| 灌阳县| 柳林县| 宁德市| 庄浪县| 正定县| 六枝特区| 九龙县| 会昌县| 玛沁县| 菏泽市| 肃南| 临泉县| 历史| 安庆市| 九龙城区| 罗江县| 易门县| 海安县| 金塔县| 黄大仙区| 怀仁县| 万州区| 龙州县| 阿勒泰市| 嵊泗县| 黄平县| 拉萨市| 铜川市| 九龙县| 宜阳县| 哈尔滨市| 阳东县| 巴青县| 三门峡市| 象州县| 都匀市| 金溪县| 宜春市| 邢台县|