找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Shortest Paths; Exact or Approximate Fajie Li,Reinhard Klette Book 2011 Springer-Verlag London Limited 2011 Art Gallery Problems.

[復(fù)制鏈接]
樓主: 瘦削
11#
發(fā)表于 2025-3-23 10:15:38 | 只看該作者
Paths on Surfaces or .=2, where .. is the length of a shortest path, ... the length of the initial path, .. the length of a restricted shortest path, and ... the length of an initial path for the restricted path calculation. Both proposed RBAs are easy to implement. Applications are, for example, in 3D object analysis in biomedical or industrial imaging.
12#
發(fā)表于 2025-3-23 16:05:44 | 只看該作者
Safari and Zookeeper Problemsting ZRP with . runtime, where . is the number of vertices of all polygons involved, and . the number of the “cages”. Extensions of the algorithms presented can solve more general SRPs and ZRPs if each convex polygon is replaced by a convex region such as convex polybeziers (beziergons) or ellipses.
13#
發(fā)表于 2025-3-23 21:31:10 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:31 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus,s never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation of Mitchell’s continuous Dijkstra algorithm for subdividing the plane into a shortest-path map for supporting queries about distances to a fixed start point in the presence of polygonal obstacles.
15#
發(fā)表于 2025-3-24 04:54:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:24:22 | 只看該作者
https://doi.org/10.1007/978-981-10-4376-5 available polygonal regions. This chapter explains a few exact algorithms in this area which run typically in linear or (.log.)-time with respect to a given input parameter .. However, the problems could also be solved approximately by rubberband algorithms.
17#
發(fā)表于 2025-3-24 11:21:42 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus, down-stable vertices). Chazelle’s algorithm, published in 1991 and claimed to be of linear time, is often cited as a reference, but this algorithm was never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation o
18#
發(fā)表于 2025-3-24 16:01:29 | 只看該作者
Matthew T. Crow,Erica N. Johnsonin .. It uses triangulation of simple polygons as presented in the previous chapter as a preprocessing step, and has a time complexity that is determined by that of the prior triangulation..This chapter provides two rubberband algorithms for computing a shortest path between . and . that is containe
19#
發(fā)表于 2025-3-24 21:51:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:13:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐池县| 祥云县| 黎平县| 常熟市| 仁化县| 佛山市| 晋城| 会宁县| 波密县| 巩义市| 淅川县| 阿合奇县| 遵义市| 昔阳县| 织金县| 万载县| 广昌县| 吴川市| 江达县| 花莲市| 阿城市| 阿坝县| 日喀则市| 德惠市| 利辛县| 咸丰县| 乐山市| 边坝县| 洛扎县| 伊宁县| 城步| 邳州市| 兴化市| 鱼台县| 昌都县| 日土县| 兴业县| 博湖县| 阿合奇县| 阳高县| 繁峙县|