找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Geometry and its Subgeometries; Edward John Specht,Harold Trainer Jones,Donald H. Book 2015 Springer International Publishing S

[復(fù)制鏈接]
樓主: Jurisdiction
11#
發(fā)表于 2025-3-23 18:42:59 | 只看該作者
exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online cover978-3-319-79533-1978-3-319-23775-6
12#
發(fā)表于 2025-3-24 00:05:35 | 只看該作者
13#
發(fā)表于 2025-3-24 05:46:45 | 只看該作者
https://doi.org/10.1007/978-3-642-69250-5trices and determinants are given; there is also discussion of the roles of axioms, theorems, and definitions in a mathematical theory. The main development of the book begins here with the statement of eight incidence axioms and proof of a few theorems including one from Desargues.
14#
發(fā)表于 2025-3-24 06:55:16 | 只看該作者
15#
發(fā)表于 2025-3-24 14:31:45 | 只看該作者
Book 2015ailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors p
16#
發(fā)表于 2025-3-24 14:57:01 | 只看該作者
Devotion to St. Anne in Texts and Imagesexistence of a line (not necessarily unique) through a given point parallel to a given line. Ordering of angles is defined, leading to the notions of acute angle, obtuse angle, and maximal angle of a triangle.
17#
發(fā)表于 2025-3-24 21:38:24 | 只看該作者
18#
發(fā)表于 2025-3-25 01:24:00 | 只看該作者
19#
發(fā)表于 2025-3-25 07:11:33 | 只看該作者
Dilations of a Euclidean Plane (DLN),in an intricate process; these, in turn, are used to define dilations, which are shown to be belineations. A method is provided for point-wise construction of a dilation having a given action. A classical proposition attributed to Pappus of Alexandria is proved.
20#
發(fā)表于 2025-3-25 07:37:46 | 只看該作者
Edward John Specht,Harold Trainer Jones,Donald H. Provides a complete and rigorous axiomatic treatment of Euclidean geometry..Proofs for many theorems are worked out in detail..Takes a modern approach by replacing congruence axioms with a transformat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
刚察县| 石门县| 涞源县| 洛宁县| 文昌市| 德惠市| 双辽市| 镇坪县| 军事| 洛扎县| 富顺县| 安塞县| 德钦县| 新乐市| 屏东市| 安乡县| 民丰县| 蕲春县| 望谟县| 河北省| 公安县| 拉萨市| 青河县| 家居| 监利县| 井研县| 迭部县| 西盟| 丹江口市| 锡林郭勒盟| 南召县| 秦皇岛市| 马尔康县| 琼结县| 康乐县| 千阳县| 陇川县| 渭源县| 长海县| 社旗县| 南昌市|