找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Etale Cohomology and the Weil Conjecture; Eberhard Freitag,Reinhardt Kiehl Book 1988 Springer-Verlag Berlin Heidelberg 1988 Abelian variet

[復(fù)制鏈接]
查看: 49625|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:31:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Etale Cohomology and the Weil Conjecture
編輯Eberhard Freitag,Reinhardt Kiehl
視頻videohttp://file.papertrans.cn/316/315837/315837.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Etale Cohomology and the Weil Conjecture;  Eberhard Freitag,Reinhardt Kiehl Book 1988 Springer-Verlag Berlin Heidelberg 1988 Abelian variet
描述Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne‘s proof of the Weil conjec- tures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as self- contained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to
出版日期Book 1988
關(guān)鍵詞Abelian varieties; Abelian variety; algebraic geometry; cohomology; collaboration; development; diophantin
版次1
doihttps://doi.org/10.1007/978-3-662-02541-3
isbn_softcover978-3-662-02543-7
isbn_ebook978-3-662-02541-3Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Etale Cohomology and the Weil Conjecture影響因子(影響力)




書目名稱Etale Cohomology and the Weil Conjecture影響因子(影響力)學(xué)科排名




書目名稱Etale Cohomology and the Weil Conjecture網(wǎng)絡(luò)公開度




書目名稱Etale Cohomology and the Weil Conjecture網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Etale Cohomology and the Weil Conjecture被引頻次




書目名稱Etale Cohomology and the Weil Conjecture被引頻次學(xué)科排名




書目名稱Etale Cohomology and the Weil Conjecture年度引用




書目名稱Etale Cohomology and the Weil Conjecture年度引用學(xué)科排名




書目名稱Etale Cohomology and the Weil Conjecture讀者反饋




書目名稱Etale Cohomology and the Weil Conjecture讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:52:47 | 只看該作者
Schlussbetrachtuog und Ausblick,The aim of this book is to develop Grothendieck’s etale cohomology theory of algebraic varieties as far as necessary and then to present Deligne’s proof of the Weil conjecture using this cohomology.
地板
發(fā)表于 2025-3-22 07:37:39 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:55 | 只看該作者
Martin Reckenfelderb?umer,Christian ArnoldThe goal of this chapter is to prove the rationality of the Weil ζ-function of an algebraic variety over a finite field, or more generally of the .-series for constructible sheaves (Theorem 4.4). Following Grothendieck, we will derive the rationality from a fixed point formula of Lefschetz type for the Frobenius morphism (Proposition 4.2).
6#
發(fā)表于 2025-3-22 16:22:44 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:23:45 | 只看該作者
9#
發(fā)表于 2025-3-23 05:04:48 | 只看該作者
The Essentials of Etale Cohomology Theory,We start this chapter with an example, due to J-P. Serre, that illuminates some of the difficulties in constructing a Weil cohomology.
10#
發(fā)表于 2025-3-23 08:44:26 | 只看該作者
,Rationality of Weil ζ-Functions,The goal of this chapter is to prove the rationality of the Weil ζ-function of an algebraic variety over a finite field, or more generally of the .-series for constructible sheaves (Theorem 4.4). Following Grothendieck, we will derive the rationality from a fixed point formula of Lefschetz type for the Frobenius morphism (Proposition 4.2).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽江市| 九寨沟县| 饶河县| 启东市| 当阳市| 马龙县| 横山县| 龙州县| 威海市| 高邑县| 调兵山市| 大兴区| 乐业县| 巩留县| 准格尔旗| 香港 | 喜德县| 忻州市| 巴中市| 肥西县| 哈巴河县| 荔浦县| 泰安市| 常宁市| 辉南县| 同德县| 井研县| 武乡县| 舞阳县| 杂多县| 土默特左旗| 岳池县| 镶黄旗| 通许县| 来宾市| 郁南县| 杂多县| 马尔康县| 澄江县| 申扎县| 开鲁县|