找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larra?aga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[復(fù)制鏈接]
樓主: Stubborn
41#
發(fā)表于 2025-3-28 14:54:45 | 只看該作者
Feature Weighting for Nearest Neighbor by Estimation of Distribution Algorithms for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAscessfully applied to give an approximate algorithm for it (de Campos et al., 1999). In this work we approach the problem by means of Estimation of Distribution Algorithms, and an empirical comparison between the results obtained by Genetic Algorithms and Estimation of Distribution Algorithms is carried out.
43#
發(fā)表于 2025-3-28 23:43:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:57:27 | 只看該作者
Solving the Traveling Salesman Problem with EDAsarch) is combined with EDAs to find better solutions. We show experimental results obtained on several standard examples for discrete and continuous EDAs both alone and combined with a heuristic local search.
45#
發(fā)表于 2025-3-29 08:47:18 | 只看該作者
Rule Induction by Estimation of Distribution Algorithmsmple rules. This problem has been modeled to allow representations with different complexities. Experimental results comparing three types of EDAs —UMDA, a dependency tree and EBNAwith two classical algorithms of rule induction —RIPPER and CN2— are shown.
46#
發(fā)表于 2025-3-29 12:25:11 | 只看該作者
47#
發(fā)表于 2025-3-29 17:29:46 | 只看該作者
48#
發(fā)表于 2025-3-29 21:45:05 | 只看該作者
M. Kasaya,K. Takegahara,A. Yanase,T. Kasuya for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
49#
發(fā)表于 2025-3-30 03:41:12 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石阡县| 喜德县| 从江县| 额敏县| 塔河县| 房山区| 禹州市| 修水县| 定州市| 丰台区| 台江县| 普陀区| 奉节县| 桦川县| 辉县市| 白河县| 邵武市| 西安市| 云浮市| 阿拉尔市| 美姑县| 建平县| 金阳县| 伊宁市| 缙云县| 阿克陶县| 北碚区| 成安县| 资中县| 松江区| 东阳市| 富平县| 霍州市| 武强县| 长寿区| 阿尔山市| 成都市| 莱西市| 博爱县| 玉山县| 丰城市|