找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Essential Partial Differential Equations; Analytical and Compu David F. Griffiths,John W. Dold,David J. Silvester Textbook 2015 Springer Na

[復制鏈接]
樓主: intern
41#
發(fā)表于 2025-3-28 15:00:22 | 只看該作者
,Finite Difference Methods in?, ,nce of approximate solutions are developed in a one-dimensional setting. This chapter establishes the theoretical framework that is used to analyse the convergence of finite difference approximations in later chapters.
42#
發(fā)表于 2025-3-28 21:47:51 | 只看該作者
Finite Difference Methods for Elliptic PDEs, and two classical methods for improving the accuracy of computed solutions are described. Advanced topics include the extension to polar coordinates and a discussion of solution regularity when solving elliptic problems posed on nonconvex domains.
43#
發(fā)表于 2025-3-29 01:26:56 | 只看該作者
Finite Difference Methods for Parabolic PDEs,ing schemes are introduced and the quality of resulting numerical approximations is assessed using maximum principles as well as the classical Von Neumann stability framework. The development of method-of-lines software is discussed at the end of the chapter.
44#
發(fā)表于 2025-3-29 05:54:33 | 只看該作者
1615-2085 edicated to projects intended for individual or group study..This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established
45#
發(fā)表于 2025-3-29 08:10:54 | 只看該作者
Textbook 2015omputational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbol
46#
發(fā)表于 2025-3-29 14:52:12 | 只看該作者
47#
發(fā)表于 2025-3-29 16:27:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平阴县| 临湘市| 永兴县| 沁水县| 公主岭市| 五大连池市| 手游| 焉耆| 怀安县| 小金县| 舞钢市| 甘孜| 上林县| 万荣县| 宜宾市| 康保县| 鸡东县| 蓝山县| 南宫市| 五原县| 灵璧县| 屏边| 昌都县| 宁河县| 卢氏县| 西林县| 张家界市| 济阳县| 海南省| 旬阳县| 乃东县| 乐东| 康平县| 淮安市| 灵璧县| 沛县| 蚌埠市| 汶上县| 封开县| 梧州市| 绥芬河市|