找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ernst Equation and Riemann Surfaces; Analytical and Numer Christian Klein Book 2005 Springer-Verlag Berlin Heidelberg 2005 Einstein equatio

[復(fù)制鏈接]
樓主: gratuity
11#
發(fā)表于 2025-3-23 13:19:55 | 只看該作者
https://doi.org/10.1007/3-540-45267-2ary axisymmetric Einstein equations in vacuum. In fact the Ernst potential for the Kerr solution is just an algebraic function in suitable coordinates, see (1.8). In this chapter we study a dimensional reduction of the vacuum Einstein equations in the presence of two Killing vectors which will lead
12#
發(fā)表于 2025-3-23 17:06:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:50:05 | 只看該作者
Le Fort-V. Guillermo,Budnevich L. Carlosurface of the spectral parameter, the physical coordinates were .xed in a way that they did not coincide with the singularities of the matrix of the linear system. In the present chapter we want to investigate the behavior of the found solutions in dependence of the physical coordinates, especially
14#
發(fā)表于 2025-3-24 00:00:52 | 只看該作者
https://doi.org/10.1007/978-1-349-15071-7 rich classes of solutions which could describe the exterior gravitational .eld of stars and galaxies in thermodynamical equilibrium. In the present chapter we will use these methods to actually solve boundary value problems which are motivated by astrophysical models, in particular so-called dust d
15#
發(fā)表于 2025-3-24 04:55:31 | 只看該作者
https://doi.org/10.1007/978-3-658-12025-2we gave an explicit solution on a Riemann surface of genus 2 in Theorem 5.16 where the two counter-rotating dust streams have constant angular velocity and constant relative density. In the present chapter we discuss the physical features of the class of hyperelliptic solutions (4.19) which are a su
16#
發(fā)表于 2025-3-24 09:38:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:20:15 | 只看該作者
Christian KleinExamines in detail the solutions to the Ernst equation associated to Riemann surfaces.Physical and mathematical aspects of this class are discussed both analytically and numerically.This is the only b
18#
發(fā)表于 2025-3-24 18:37:32 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/e/image/314827.jpg
19#
發(fā)表于 2025-3-24 21:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 永康市| 伊金霍洛旗| 和林格尔县| 武功县| 阳朔县| 舞钢市| 贡山| 清河县| 开远市| 冕宁县| 乐平市| 河北区| 布拖县| 和林格尔县| 尚志市| 革吉县| 敖汉旗| 光山县| 辽源市| 阿鲁科尔沁旗| 萝北县| 长岛县| 昭通市| 隆林| 浮山县| 华容县| 广安市| 乌恰县| 徐水县| 龙海市| 武汉市| 仁寿县| 蒲江县| 丰都县| 丹江口市| 陕西省| 灵台县| 永仁县| 天峨县| 万宁市|