找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Related Topics III; Proceedings of the I Ulrich Krengel,Karin Richter,Volker Warstat Conference proceedings 1992 Springe

[復(fù)制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 19:07:12 | 只看該作者
The Abramov-Rokhlin formula,The Abramov-Rokhlin formula states that the entropy of a measure-preserving transformation . equals the sum of the entropy of a factor . of . and the entropy of . relative to .. We prove this formula for non-invertible transformations and apply it to skew-product transformations.
12#
發(fā)表于 2025-3-23 23:12:51 | 只看該作者
Upper and lower class results for subsequences of the Champernowne number,We determine upper and lower bounds for partial sums of subsequences of the dyadic Champernowne sequence, which are obtained from completely deterministic selection functions. This complements results by Shiokawa and Uchiyama.
13#
發(fā)表于 2025-3-24 03:28:07 | 只看該作者
14#
發(fā)表于 2025-3-24 08:30:47 | 只看該作者
Ergodic theorem along a return time sequence,We prove that return time sequences for dynamical systems which are abelian extensions of translations, are universaly good for the pointwise ergodic theorem. This can be used to prove the pointwise ergodic theorem along Morse sequence. This last result can also be proved by means of estimations of trigonometric sums.
15#
發(fā)表于 2025-3-24 14:25:43 | 只看該作者
16#
發(fā)表于 2025-3-24 18:14:55 | 只看該作者
17#
發(fā)表于 2025-3-24 20:10:49 | 只看該作者
978-3-540-55444-8Springer-Verlag Berlin Heidelberg 1992
18#
發(fā)表于 2025-3-24 23:25:04 | 只看該作者
19#
發(fā)表于 2025-3-25 04:39:38 | 只看該作者
20#
發(fā)表于 2025-3-25 11:25:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江津市| 和静县| 承德县| 宣汉县| 澜沧| 桓台县| 涟源市| 博野县| 广南县| 炎陵县| 海阳市| 满城县| 分宜县| 昆明市| 贵定县| 连江县| 乐亭县| 贵阳市| 柳林县| 石门县| 运城市| 册亨县| 富锦市| 临湘市| 临邑县| 五常市| 鹿泉市| 东兴市| 景洪市| 怀远县| 汪清县| 中山市| 迭部县| 墨竹工卡县| 万盛区| 都昌县| 康马县| 罗定市| 泸州市| 清河县| 肇源县|