找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Dynamical Systems II; Proceedings Special A. Katok Conference proceedings 1982 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: CT951
21#
發(fā)表于 2025-3-25 06:27:48 | 只看該作者
A Note on Generic Properties of Continuous Maps, others, the property . (the set of non-wandering points is the closure of the set of periodic points) is C.-generic, i.e., holds for all homeomorphisms in some residual subset of the space Homeo(M) of all homeomorphisms of M to itself. This note points out and corrects a technical error in their pr
22#
發(fā)表于 2025-3-25 09:42:38 | 只看該作者
Cross Section Maps for Geodesic Flows, I,sic flows on two-dimensional surfaces of constant negative curvature, a rather active area in the thirties studied by many well known mathematicians. For a detailed survey of the work during that period see [H2]. The second one deals with ergodic properties of noninvertible mappings of the unit inte
23#
發(fā)表于 2025-3-25 12:42:43 | 只看該作者
24#
發(fā)表于 2025-3-25 16:37:47 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:21 | 只看該作者
26#
發(fā)表于 2025-3-26 00:29:39 | 只看該作者
Cross Section Maps for Geodesic Flows, I,d trace a connection of these formulas to Liouville’s theorem for Hamiltonian Systems.) This fact is particularly interesting as there is a paucity of explicit formulas for invariant measures of interval maps and we have here a method of deriving a class of these. In particular we shall show how Gau
27#
發(fā)表于 2025-3-26 06:32:44 | 只看該作者
Biotechnology Products in Everyday Lifed trace a connection of these formulas to Liouville’s theorem for Hamiltonian Systems.) This fact is particularly interesting as there is a paucity of explicit formulas for invariant measures of interval maps and we have here a method of deriving a class of these. In particular we shall show how Gau
28#
發(fā)表于 2025-3-26 09:42:59 | 只看該作者
29#
發(fā)表于 2025-3-26 12:43:29 | 只看該作者
A Note on Generic Properties of Continuous Maps,ms in some residual subset of the space Homeo(M) of all homeomorphisms of M to itself. This note points out and corrects a technical error in their proof, and extends the result to the space C. (M, M) of all continuous maps of M to itself.
30#
發(fā)表于 2025-3-26 17:54:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 10:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
房山区| 确山县| 濮阳市| 辽宁省| 维西| 临潭县| 蓝山县| 桐城市| 拜泉县| 开化县| 富蕴县| 宁南县| 湘阴县| 五寨县| 珠海市| 永登县| 抚顺县| 扶沟县| 宜昌市| 宁陕县| 西丰县| 始兴县| 阳西县| 肃南| 高邮市| 大邑县| 庆城县| 保定市| 绍兴市| 开阳县| 平陆县| 抚顺县| 朝阳区| 含山县| 崇义县| 衡阳县| 始兴县| 嘉定区| 海阳市| 金湖县| 东平县|