找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Dynamical Systems I; Proceedings Special A. Katok Conference proceedings 1981 Springer Science+Business Media New York

[復制鏈接]
樓主: Eisenhower
11#
發(fā)表于 2025-3-23 09:42:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:13 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:53 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:13 | 只看該作者
15#
發(fā)表于 2025-3-24 03:01:14 | 只看該作者
Enzymatic Processing of Musts and Wines,Several aspects of the title are explained. In particular an example is constructed in which there is a unique minimal set, all points are generic and there is a continuous arc of ergodic measures.
16#
發(fā)表于 2025-3-24 10:34:40 | 只看該作者
Continuous Homomorphisms of Bernoulli Schemes,Let m and n be integers greater than one. We set.then S and T are homeomorphisms of the compact spaces S and Y.
17#
發(fā)表于 2025-3-24 13:19:20 | 只看該作者
Projective Swiss Cheeses and Uniquely Ergodic Interval Exchange Transformations,1. Introduction. Recall that an . on a finite (left closed-right open) interval, J ? ? is a transformation, T, of J which results from decomposing J into a finite number of (left closed-right open) subintervals and translating these subintervals in such a way that their union is again J. T is determined by J and three additional entities:
18#
發(fā)表于 2025-3-24 18:44:44 | 只看該作者
When All Points are Recurrent/Generic,Several aspects of the title are explained. In particular an example is constructed in which there is a unique minimal set, all points are generic and there is a continuous arc of ergodic measures.
19#
發(fā)表于 2025-3-24 20:25:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:09:00 | 只看該作者
Disjointness of Measure-Preserving Transformations, Minimal Self-Joinings and Category,a given ergodic transformation is a dense G.. The class of transformations T such that the family {T.: i ? ?} is disjoint is also a dense G.. As a corollary there exists an uncountable family {T.: α ? A} of weakly-mixing transformations such that the family . is disjoint.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 23:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汕尾市| 泊头市| 佛学| 南丰县| 松江区| 和平县| 寿宁县| 浠水县| 滁州市| 通辽市| 华亭县| 明星| 都江堰市| 怀柔区| 淅川县| 贡山| 峡江县| 曲周县| 雷州市| 灯塔市| 黑水县| 巫山县| 井陉县| 济南市| 元氏县| 通化市| 永修县| 潜江市| 柏乡县| 台安县| 分宜县| 衡山县| 万山特区| 高清| 哈密市| 乌海市| 通榆县| 肥东县| 华宁县| 株洲县| 抚州市|