找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory; with a view towards Manfred Einsiedler,Thomas Ward Textbook 2011 Springer-Verlag London Limited 2011 Ergodic theory.Homoge

[復(fù)制鏈接]
樓主: satisficer
21#
發(fā)表于 2025-3-25 06:39:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:46:15 | 只看該作者
Girish Mahajan,Lakshmi Balachandranus spaces by studying the geodesic flow on hyperbolic surfaces. Since we do not assume any prior knowledge of Lie theory or differential geometry, the material needed is introduced here. As an application, the geodesic flow is used to give another proof of ergodicity for the Gauss measure from Chapter 3.
23#
發(fā)表于 2025-3-25 15:09:49 | 只看該作者
Jan Wilschut,Janny Scholma,Toon Stegmannorocycle flow, and go on to deduce from mixing of the geodesic flow a form of unique ergodicity for the horocycle flow. We use this, together with the ergodic decomposition, to establish equidistribution for orbits of the horocycle flow.
24#
發(fā)表于 2025-3-25 16:09:00 | 只看該作者
Motivation,ticular to problems in number theory. This chapter introduces some of the important examples needed, and states some of the theorems arising from ergodic theory that will be discussed in this volume. We also discuss ergodic theory in more general terms.
25#
發(fā)表于 2025-3-25 20:46:13 | 只看該作者
Ergodicity, Recurrence and Mixing,tionship between various mixing properties is described. The mean and pointwise ergodic theorems are proved. An approach to the maximal ergodic theorem via a covering lemma is given, which will be extended in Chapter 8 to more general group actions.
26#
發(fā)表于 2025-3-26 00:49:29 | 只看該作者
27#
發(fā)表于 2025-3-26 08:00:57 | 只看該作者
Geodesic Flow on Quotients of the Hyperbolic Plane,us spaces by studying the geodesic flow on hyperbolic surfaces. Since we do not assume any prior knowledge of Lie theory or differential geometry, the material needed is introduced here. As an application, the geodesic flow is used to give another proof of ergodicity for the Gauss measure from Chapter 3.
28#
發(fā)表于 2025-3-26 11:12:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:51 | 只看該作者
Manfred Einsiedler,Thomas WardWith a rigorous development of basic ergodic theory and homogeneous dynamics, no background in Ergodic theory or Lie theory is assumed Offers both complete and motivated treatments of Weyl and Szemere
30#
發(fā)表于 2025-3-26 18:19:39 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/e/image/314487.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 宿松县| 武强县| 潜山县| 天津市| 类乌齐县| 宽城| 德保县| 云和县| 施秉县| 木兰县| 老河口市| 衡水市| 冷水江市| 隆化县| 彭泽县| 信宜市| 米泉市| 晋城| 铁岭县| 阳江市| 巫溪县| 马边| 鄂温| 门源| 育儿| 辛集市| 额济纳旗| 五莲县| 舞阳县| 福清市| 佛山市| 嘉鱼县| 红原县| 小金县| 全州县| 新丰县| 抚州市| 东山县| 双辽市| 平乡县|