找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theoretic Methods in Group Homology; A Minicourse on L2-B Clara L?h Book 2020 The Author(s), under exclusive license to Springer Na

[復(fù)制鏈接]
樓主: Tyler
21#
發(fā)表于 2025-3-25 07:24:04 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:49 | 只看該作者
The von Neumann Dimension,ion; this leads to .-Betti numbers. In this chapter, we will introduce such an equivariant version of dimension, using the group von Neumann algebra. In Chap.?., this dimension will allow us to define .-Betti numbers of groups and spaces.
23#
發(fā)表于 2025-3-25 13:48:45 | 只看該作者
The Residually Nite View: Approximation,rings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
24#
發(fā)表于 2025-3-25 16:23:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:55 | 只看該作者
Invariant Random Subgroups,in the statement of the theorem and two instructive examples. We will then sketch how ergodic theory, in the incarnation of invariant random subgroups, helps to handle such homology gradients and outline the structure of the proof of the theorem.
26#
發(fā)表于 2025-3-26 03:35:47 | 只看該作者
27#
發(fā)表于 2025-3-26 07:15:00 | 只看該作者
Redouane Choukr-Allah,Ragab Ragabrings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
28#
發(fā)表于 2025-3-26 09:16:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵化市| 桂阳县| 江津市| 砚山县| 绥棱县| 烟台市| 永川市| 宜良县| 河间市| 延边| 永丰县| 淄博市| 徐州市| 如皋市| 中宁县| 庄浪县| 渝中区| 大悟县| 积石山| 太仆寺旗| 满洲里市| 淳化县| 贵阳市| 兴化市| 水富县| 东明县| 都兰县| 临海市| 桃园市| 青田县| 和龙市| 罗江县| 故城县| 龙山县| 东丽区| 宁化县| 兴宁市| 石林| 建湖县| 铜山县| 汪清县|