找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theorems for Group Actions; Informational and Th Arkady Tempelman Book 1992 Springer Science+Business Media Dordrecht 1992 Maxima.P

[復(fù)制鏈接]
樓主: obsess
11#
發(fā)表于 2025-3-23 13:46:21 | 只看該作者
Overview: 978-90-481-4155-5978-94-017-1460-0
12#
發(fā)表于 2025-3-23 17:28:10 | 只看該作者
https://doi.org/10.1007/978-94-017-1460-0Maxima; Probability theory; harmonic analysis; measure theory; statistical physics
13#
發(fā)表于 2025-3-23 18:41:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:16:27 | 只看該作者
Supriya Ratnaparkhe,Milind B. RatnaparkheLet . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
16#
發(fā)表于 2025-3-24 08:38:03 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:16 | 只看該作者
N. Dhivya Priya,M. ThirumarimuruganWe denote by . the space of all measurable .-valued functions with the seminorm . convergence in . is the same as convergence in ..
18#
發(fā)表于 2025-3-24 17:53:45 | 只看該作者
Introduction,This book deals with problems connected with generalizations of classical ergodic theorems for endomorphisms and flows in measure spaces; first of all with the “pointwise” BirkhofF and the “mean” von Neumann ergodic theorems. We shall briefly discuss the content and the role of these two theorems.
19#
發(fā)表于 2025-3-24 20:18:53 | 只看該作者
Averaging Sequences. Universal Ergodic Theorems,Let (., B) be a measurable semigroup; B . (B) the Banach space of all signed measures of bounded variation on B with norm ‖.‖ = var .; P(B) the set of all probability measures on B; . the set of all probability measures . on . whose carriers .(.) are finite sets; and let F. be the subspace in .. consisting of the bounded measurable functions on ..
20#
發(fā)表于 2025-3-25 02:05:28 | 只看該作者
Mean Ergodic Theorems,Let . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 定州市| 龙里县| 三门县| 从化市| 东至县| 永春县| 碌曲县| 五大连池市| 莲花县| 浑源县| 固始县| 乐陵市| 乐山市| 平泉县| 大邑县| 广丰县| 汉源县| 乳源| 镶黄旗| 桂平市| 建昌县| 交口县| 台安县| 大荔县| 翁源县| 梅河口市| 页游| 城市| 习水县| 五华县| 顺义区| 长武县| 郓城县| 敦化市| 本溪市| 慈溪市| 普定县| 延吉市| 梅河口市| 唐山市|