找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Optimization in the Expanding Case; Concepts, Tools and Eduardo Garibaldi Book 2017 The Author(s) 2017 ergodic optimization.weak K

[復(fù)制鏈接]
查看: 10065|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:10:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Ergodic Optimization in the Expanding Case
副標(biāo)題Concepts, Tools and
編輯Eduardo Garibaldi
視頻videohttp://file.papertrans.cn/315/314480/314480.mp4
概述Provides an innovative and useful approach to ergodic optimization for a broader audience.Explores the power of Sub-actions as tools for Symbolic Dynamics.Describes the relations between ergodic optim
叢書(shū)名稱SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: Ergodic Optimization in the Expanding Case; Concepts, Tools and  Eduardo Garibaldi Book 2017 The Author(s) 2017 ergodic optimization.weak K
描述This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This work presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory..
出版日期Book 2017
關(guān)鍵詞ergodic optimization; weak KAM; sub-actions; Aubry set; Ma?é potential; thermodynamics
版次1
doihttps://doi.org/10.1007/978-3-319-66643-3
isbn_softcover978-3-319-66642-6
isbn_ebook978-3-319-66643-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2017
The information of publication is updating

書(shū)目名稱Ergodic Optimization in the Expanding Case影響因子(影響力)




書(shū)目名稱Ergodic Optimization in the Expanding Case影響因子(影響力)學(xué)科排名




書(shū)目名稱Ergodic Optimization in the Expanding Case網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Ergodic Optimization in the Expanding Case網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Ergodic Optimization in the Expanding Case被引頻次




書(shū)目名稱Ergodic Optimization in the Expanding Case被引頻次學(xué)科排名




書(shū)目名稱Ergodic Optimization in the Expanding Case年度引用




書(shū)目名稱Ergodic Optimization in the Expanding Case年度引用學(xué)科排名




書(shū)目名稱Ergodic Optimization in the Expanding Case讀者反饋




書(shū)目名稱Ergodic Optimization in the Expanding Case讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:45:24 | 只看該作者
Ergodic Optimization in the Expanding Case978-3-319-66643-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 07:08:02 | 只看該作者
5#
發(fā)表于 2025-3-22 10:20:55 | 只看該作者
Bioremediation and Biotechnology, Vol 2onals will be available in ergodic optimization theory. The concepts that will be discussed in this chapter, namely, the Peierls barrier and the Ma?é potential go back to the contributions of both Mather and Ma?é in Lagrangian systems.
6#
發(fā)表于 2025-3-22 15:30:45 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:15:28 | 只看該作者
Environmental Science and Engineeringstatistical mechanics. In this concluding chapter, we provide a first glimpse of such a rich interaction among theories, by scrutinizing with basic techniques the convergence of equilibrium states to a particular maximizing probability on certain examples.
9#
發(fā)表于 2025-3-23 02:26:10 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台东市| 牙克石市| 甘谷县| 余庆县| 吉安县| 荆门市| 邯郸县| 太原市| 新源县| 崇信县| 甘谷县| 葵青区| 巴楚县| 叶城县| 湘潭市| 新郑市| 福鼎市| 广饶县| 莒南县| 包头市| 同仁县| 栖霞市| 镇远县| 原阳县| 宝坻区| 武功县| 宜城市| 清原| 广灵县| 宝丰县| 大名县| 偏关县| 拉萨市| 彭泽县| 凤山县| 青海省| 克什克腾旗| 武隆县| 新密市| 山阴县| 金华市|