找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equilibrium Theory in Infinite Dimensional Spaces; M. Ali Khan,Nicholas C. Yannelis Book 1991 Springer-Verlag Berlin Heidelberg 1991 Gleic

[復(fù)制鏈接]
樓主: 動詞
11#
發(fā)表于 2025-3-23 13:32:21 | 只看該作者
https://doi.org/10.1007/978-3-319-21106-0in the presence of infinitely many commodities the Aumann (1964, 1966) measure space of agents, i.e., the interval [0,1] endowed with Lebesgue measure, is not appropriate to model the idea of perfect competition and we provide a characterization of the “appropriate” measure space of agents in an inf
12#
發(fā)表于 2025-3-23 16:21:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:44 | 只看該作者
Topological Analysis of the Fukui Functionrinciple is proven, and the set of equilibria is compared with the sets of strategy and action correlated equilibria. The equilibrium correspondence is shown to be discontinuous with respect to the information structure of the game, in contrast with previous continuity results for strategy and actio
14#
發(fā)表于 2025-3-23 22:59:40 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:12:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:29 | 只看該作者
Applications of Synchrotron RadiationThe equilibrium existence theorem we obtain resembles Robert Aumann’s (1966) Auxiliary Theorem, in which he assumes that preferences are commodity-wise saturated. Our result may therefore be looked upon as a first step towards a satisfactory existence theorem for .. (if such a theorem exists).
19#
發(fā)表于 2025-3-24 20:58:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:57 | 只看該作者
https://doi.org/10.1007/978-3-540-49556-7We provide sufficient conditions which guarantee the existence of correlated equilibria in noncooperative games with finitely many players.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左云县| 南开区| 大名县| 察雅县| 洪洞县| 武穴市| 浦江县| 张掖市| 林芝县| 湛江市| 通许县| 蒙山县| 兴文县| 涟水县| 马边| 西安市| 喀什市| 虎林市| 德惠市| 武隆县| 双城市| 会理县| 女性| 房山区| 多伦县| 栾川县| 寿宁县| 双峰县| 克拉玛依市| 福鼎市| 宜昌市| 秭归县| 金华市| 泉州市| 平泉县| 孝昌县| 淳安县| 句容市| 永福县| 青岛市| 普安县|