找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees; Applications to Non- Anne Broise-Alamichel,Jouni Pa

[復(fù)制鏈接]
樓主: Maudlin
21#
發(fā)表于 2025-3-25 04:05:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:13:59 | 只看該作者
Application of Bamboo in Building EnvelopeIn this chapter, we give background information and preliminary results on the main link between the geometry and the algebra used for our arithmetic applications: the (discrete-time) geodesic ow on quotients of Bruhat{Tits trees by arithmetic lattices.
23#
發(fā)表于 2025-3-25 14:24:03 | 只看該作者
Susan E. Swedo,Judith L. RapoportLet K be a (global) function field over F. of genus g, let v be a (normaliseddiscrete) valuation of K, let K. be the associated completion of K, and let R.be the affine function ring associated with v.
24#
發(fā)表于 2025-3-25 15:54:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:33 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:47 | 只看該作者
Potentials, Critical Exponents,and Gibbs CocyclesLet X be a geodesically complete proper CAT(–1) space, let x. ∈ X be an arbitrary basepoint, and let Γ be a nonelementary discrete group of isometries of X.
27#
發(fā)表于 2025-3-26 08:08:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:11 | 只看該作者
Symbolic Dynamics of Geodesic Flows on TreesIn this chapter, we give a coding of the discrete-time geodesic ow on the nonwandering sets of quotients of locally finite simplicial trees X without terminal vertices by nonelementary discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet.
29#
發(fā)表于 2025-3-26 14:23:57 | 只看該作者
Random Walks on Weighted Graphs of GroupsLet X be a locally finite simplicial tree without terminal vertices, and let X = ∣X∣.be its geometric realisation. Let Γ be a nonelementary discrete subgroup of Aut(X).
30#
發(fā)表于 2025-3-26 20:09:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连山| 家居| 南投县| 盐源县| 郓城县| 兴义市| 响水县| 榆中县| 巴东县| 广平县| 高雄县| 砀山县| 唐海县| 台东市| 陆丰市| 木里| 鱼台县| 治多县| 宜兰市| 贡山| 泰和县| 崇信县| 霍邱县| 梧州市| 罗平县| 徐州市| 新昌县| 南充市| 通海县| 蓬溪县| 赫章县| 遂平县| 阿荣旗| 龙里县| 北流市| 北川| 太和县| 内丘县| 上犹县| 杭锦后旗| 昔阳县|