找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Epistemic Logic and the Theory of Games and Decisions; Michael Bacharach (Professor of Economics and Dire Book 1997 Kluwer Academic Publis

[復(fù)制鏈接]
樓主: proptosis
41#
發(fā)表于 2025-3-28 17:55:53 | 只看該作者
42#
發(fā)表于 2025-3-28 20:17:28 | 只看該作者
Daizhan Cheng,Hongsheng Qi,Zhiqiang Li any game the strategies that might be chosen by rational and intelligent players who know the structure of the game, and who recognize each other’s rationality and knowledge. The problem was not to find the set of strategies that satisfied some independent characterization of rationality and intell
43#
發(fā)表于 2025-3-29 00:08:09 | 只看該作者
Series and Integral Representations,owing an equally well-received (albeit questionable) view, a known event must be true. Hence the standard definition of . (CK), as perhaps first introduced by Lewis (1969) and as formalized in Aumann’s (1976) classic paper: an event is said to be CK if it is true, every individual in the group knows it, etc.
44#
發(fā)表于 2025-3-29 03:49:30 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:53 | 只看該作者
On the Logic of Common Belief and Common Knowledgeowing an equally well-received (albeit questionable) view, a known event must be true. Hence the standard definition of . (CK), as perhaps first introduced by Lewis (1969) and as formalized in Aumann’s (1976) classic paper: an event is said to be CK if it is true, every individual in the group knows it, etc.
46#
發(fā)表于 2025-3-29 12:25:54 | 只看該作者
Synchronic Information, Knowledge and Common Knowledge in Extensive Games is her turn to move, etc. It is not, however, a sufficiently rich language in the sense that there are meaningful and natural statements that one can make (about a given extensive game) whose truth cannot be decided without making the language richer. We shall give two examples. Consider first the extensive form of Figure 1.
47#
發(fā)表于 2025-3-29 16:45:40 | 只看該作者
48#
發(fā)表于 2025-3-29 21:07:20 | 只看該作者
https://doi.org/10.1007/978-1-4613-1139-3agents; bounded rationality; decision theory; economics; game theory; knowledge; reason
49#
發(fā)表于 2025-3-30 02:50:23 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:51 | 只看該作者
Epistemic Logic and the Theory of Games and Decisions978-1-4613-1139-3Series ISSN 0924-6126 Series E-ISSN 2194-3044
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英山县| 余庆县| 济源市| 瓮安县| 清涧县| 通州市| 勃利县| 新巴尔虎右旗| 多伦县| 竹溪县| 渭南市| 凤阳县| 高淳县| 澄迈县| 盖州市| 桃江县| 山阴县| 永安市| 饶平县| 元江| 康保县| 乃东县| 云安县| 宜兰县| 汝城县| 安岳县| 延边| 肥东县| 无棣县| 会理县| 肇州县| 囊谦县| 库伦旗| 金沙县| 石嘴山市| 淮南市| 宁海县| 威海市| 封丘县| 齐河县| 邳州市|