找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Entscheidungskriterien bei Risiko; Hans Schneewei? Textbook 1966 Springer-Verlag Berlin Heidelberg 1966 Entscheidung.Entscheidung (Wirtsch

[復(fù)制鏈接]
樓主: Coarse
11#
發(fā)表于 2025-3-23 13:27:00 | 只看該作者
12#
發(fā)表于 2025-3-23 17:25:30 | 只看該作者
13#
發(fā)表于 2025-3-23 18:04:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:53:16 | 只看該作者
Bernoulli-Prinzip und klassisches Prinzipden, eine Konvention, die sich aber — wie wir sahen — weitgehend begründen l??t. Es soll auf der Grundlage dieser Konvention überprüft werden, inwieweit das klassische Prinzip bzw. Spezialf?lle davon rational sind.
15#
發(fā)表于 2025-3-24 04:33:25 | 只看該作者
Das Bernoulli-Prinzip für spezielle Klassen von Wahrscheinlichkeitsverteilungenl im Sinne des Bernoulli-Prinzips. Insbesondere ist das (., .)-Prinzip — auf das wir uns im folgenden fast ausschlie?lich beschr?nken wollen — nur dann rational, wenn die Pr?ferenzfunktion die Gestalt . (., .) = . (. + .) + . + . hat (vgl. S. 96). Die zugeh?rige Nutzenfunktion ist in diesem Fall quadratisch.
16#
發(fā)表于 2025-3-24 09:27:16 | 只看該作者
Einleitungokation empfunden. Mit den Mitteln der Astrologie und anderer mantischer Wissenschaften und sp?ter durch die Entdeckung von Naturgesetzen versuchte sie, diese Ungewi?heit zu eliminieren oder sie zumindest zu reduzieren, was ihr freilich nur in beschr?nktem Umfang gelang. Der Aufbau einer Wahrscheinl
17#
發(fā)表于 2025-3-24 12:16:39 | 只看該作者
18#
發(fā)表于 2025-3-24 18:29:34 | 只看該作者
Entscheidungskriterien für RisikosituationenNational?konomen und Statistikern ein ziemlich reichhaltiger Komplex m?glicher Kriterien vorgeschlagen worden. Unter ihnen hat sich in letzter Zeit das nach . [1738] oder auch nach v. . und . [1947] benannte Kriterium der maximalen Nutzenerwartung fast ganz durchgesetzt, zumindest, was seinen Gebrau
19#
發(fā)表于 2025-3-24 22:43:28 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:19 | 只看該作者
Das Bernoulli-Prinzip für spezielle Klassen von Wahrscheinlichkeitsverteilungenl im Sinne des Bernoulli-Prinzips. Insbesondere ist das (., .)-Prinzip — auf das wir uns im folgenden fast ausschlie?lich beschr?nken wollen — nur dann rational, wenn die Pr?ferenzfunktion die Gestalt . (., .) = . (. + .) + . + . hat (vgl. S. 96). Die zugeh?rige Nutzenfunktion ist in diesem Fall qua
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜黄县| 石林| 南城县| 澜沧| 屯昌县| 开鲁县| 陇西县| 红河县| 太湖县| 梅河口市| 柘荣县| 汾阳市| 喀喇沁旗| 板桥市| 沅江市| 禹州市| 阿巴嘎旗| 石楼县| 昌吉市| 扶沟县| 闸北区| 新平| 景德镇市| 元江| 新巴尔虎右旗| 乌鲁木齐县| 班玛县| 宁德市| 鹤庆县| 田林县| 广平县| 宁陵县| 寻甸| 和田县| 宁化县| 屯昌县| 隆昌县| 灌云县| 石门县| 谷城县| 温泉县|