找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 12th International C Lazaros Iliadis,Chrisina Jayne Conference proceedings 2011 IFIP Internati

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:03:11 | 只看該作者
Share the Recipe and Teach the Mealcond. Compared to a software implementation on a workstation, our solution achieves the same classification performance (93.3% hit rate), with more than twice the throughput and more than an order of magnitud less power.
12#
發(fā)表于 2025-3-23 16:51:39 | 只看該作者
Television, Film and Media Education,orithm is presented along with results from a large real-world European credit card data set. Through this application it is shown that neural networks can assist in mission-critical areas of business and are an important tool in the transparent detection of fraud.
13#
發(fā)表于 2025-3-23 20:50:28 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:33 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:08 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:06 | 只看該作者
https://doi.org/10.1007/978-3-030-13012-1sed appropriately. Furthermore, such environments are not static. Therefore, the robot needs to learn novel objects. In this paper, we propose a method for learning and identifying obstacles based on multi-modal information. As this approach is based on Adaptive Resonance Theory networks, it is inherently capable of incremental online learning.
17#
發(fā)表于 2025-3-24 14:30:57 | 只看該作者
and non-navigable regions. It also uses supervised learning techniques which work with different levels of memory of the templates. As output our system is capable controlling speed and steering for autonomous mobile robot navigation. Experimental tests have been carried out to evaluate the learning techniques.
18#
發(fā)表于 2025-3-24 14:51:15 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄢陵县| 锦屏县| 通许县| 云浮市| 和平县| 华亭县| 读书| 左云县| 元朗区| 萝北县| 增城市| 元朗区| 广东省| 凌云县| 连南| 军事| 房山区| 绍兴市| 肥东县| 汾阳市| 方正县| 嵊泗县| 林口县| 台江县| 宁乡县| 永宁县| 濮阳县| 大关县| 巴楚县| 静安区| 乳山市| 吉水县| 拜城县| 盐池县| 和田县| 收藏| 礼泉县| 清河县| 乐陵市| 恩施市| 桂阳县|