找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 23rd International C Lazaros Iliadis,Chrisina Jayne,Elias Pimenidis Conference proceedings 202

[復(fù)制鏈接]
查看: 15183|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:55:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Engineering Applications of Neural Networks
副標(biāo)題23rd International C
編輯Lazaros Iliadis,Chrisina Jayne,Elias Pimenidis
視頻videohttp://file.papertrans.cn/311/310706/310706.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Engineering Applications of Neural Networks; 23rd International C Lazaros Iliadis,Chrisina Jayne,Elias Pimenidis Conference proceedings 202
描述This book constitutes the refereed proceedings of the 23rd International Conference on Engineering Applications of Neural Networks, EANN 2022, held in Chersonisos, Crete, Greece, in June 2022..The 37 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on Bio inspired Modeling / Novel Neural Architectures; Classification / Clustering; Machine Learning; Convolutional / Deep Learning; Datamining / Learning / Autoencoders; Deep Learning / Blockchain; Machine Learning for Medical Images / Genome Classification; Reinforcement /Adversarial / Echo State Neural Networks; Robotics / Autonomous Vehicles, Photonic Neural Networks; Text Classification / Natural Language..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; computer hardware; computer networks; computer systems; computer vision; correla
版次1
doihttps://doi.org/10.1007/978-3-031-08223-8
isbn_softcover978-3-031-08222-1
isbn_ebook978-3-031-08223-8Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Engineering Applications of Neural Networks影響因子(影響力)




書目名稱Engineering Applications of Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Engineering Applications of Neural Networks網(wǎng)絡(luò)公開度




書目名稱Engineering Applications of Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Engineering Applications of Neural Networks被引頻次




書目名稱Engineering Applications of Neural Networks被引頻次學(xué)科排名




書目名稱Engineering Applications of Neural Networks年度引用




書目名稱Engineering Applications of Neural Networks年度引用學(xué)科排名




書目名稱Engineering Applications of Neural Networks讀者反饋




書目名稱Engineering Applications of Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:16:06 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:08 | 只看該作者
SNNs Model Analyzing and?Visualizing Experimentation Using RAVSimoding method and the nonlinear activated neuron model and transmitting only the binary spike events. However, these complex model simulations and behavioral analysis are a standard approach of parametric values verification prior to their physical implementation on the hardware. Recently some popula
5#
發(fā)表于 2025-3-22 11:55:49 | 只看該作者
6#
發(fā)表于 2025-3-22 16:12:39 | 只看該作者
7#
發(fā)表于 2025-3-22 18:32:19 | 只看該作者
Complex Layers of Formal Neuronsure complicates the design of classification or regression models..Complex layers of formal neurons (linear classifiers) can be designed on the basis of data sets composed of high-dimensional feature vectors. Linear classifiers of a given complex layer are designed on disjoint subsets of features ob
8#
發(fā)表于 2025-3-22 23:14:14 | 只看該作者
Novel Decision Forest Building Techniques by?Utilising Correlation Coefficient Methodsion forest building techniques, called Maximal Information Coefficient Forest (MICF) and Pearson’s Correlation Coefficient Forest (PCCF). The proposed new algorithms use Pearson’s Correlation Coefficient (PCC) and Maximal Information Coefficient (MIC) as extra measures of the classification capacity
9#
發(fā)表于 2025-3-23 01:59:01 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:50 | 只看該作者
On the?Suitability of?Neural Networks as?Building Blocks for?the?Design of?Efficient Learned Indexess proper of Data Structures. This new area goes under the name of .. The motivation for its study is a perceived change of paradigm in Computer Architectures that would favour the use of Graphics Processing Units and Tensor Processing Units over conventional Central Processing Units. In turn, that w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韩城市| 涿鹿县| 博湖县| 丰原市| 齐齐哈尔市| 东台市| 山东省| 醴陵市| 汝阳县| 桃园县| 云南省| 阳谷县| 聂荣县| 冷水江市| 利辛县| 外汇| 兖州市| 山东省| 长寿区| 香港| 寻乌县| 石棉县| 紫云| 大石桥市| 隆回县| 宝鸡市| 留坝县| 且末县| 玛纳斯县| 旌德县| 建德市| 华容县| 武宁县| 德庆县| 改则县| 吴旗县| 黎平县| SHOW| 津南区| 宁武县| 五台县|