找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co

[復(fù)制鏈接]
查看: 15565|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:58:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition
副標(biāo)題5th International Wo
編輯Anand Rangarajan,Baba Vemuri,Alan L. Yuille
視頻videohttp://file.papertrans.cn/311/310344/310344.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co
出版日期Conference proceedings 2005
關(guān)鍵詞3D; Image segmentation; Variable; affine transform; algorithmic learning; clustering; cognition; image anal
版次1
doihttps://doi.org/10.1007/11585978
isbn_softcover978-3-540-30287-2
isbn_ebook978-3-540-32098-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition影響因子(影響力)




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition被引頻次




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition被引頻次學(xué)科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用學(xué)科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition讀者反饋




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:45 | 只看該作者
Optimizing the Cauchy-Schwarz PDF Distance for Information Theoretic, Non-parametric Clusteringemberships of the data patterns, in order to maximize the recent Cauchy-Schwarz (CS) probability density function (pdf) distance measure. Each pdf corresponds to a cluster. The CS distance is estimated analytically and non-parametrically by means of the Parzen window technique for density estimation
地板
發(fā)表于 2025-3-22 08:02:18 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:48 | 只看該作者
6#
發(fā)表于 2025-3-22 15:01:36 | 只看該作者
Bayesian Image Segmentation Using Gaussian Field Priorsally discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems..This paper presents a formulation which allows using continuous p
7#
發(fā)表于 2025-3-22 20:46:34 | 只看該作者
Handling Missing Data in the Computation of 3D Affine Transformationsmanner have proven the most effective to deal with large image sequences. One of the key building blocks of these hierarchical approaches is the alignment of two partial 3D models, which requires to express them in the same 3D coordinate frame by computing a 3D transformation. This problem has been
8#
發(fā)表于 2025-3-23 01:10:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:15 | 只看該作者
Deformable-Model Based Textured Object Segmentationces in traditional deformable models come primarily from edges or gradient information and it becomes problematic when the object surfaces have complex large-scale texture patterns that generate many local edges within a same region. We introduce a new textured object segmentation algorithm that has
10#
發(fā)表于 2025-3-23 08:40:29 | 只看該作者
Total Variation Minimization and a Class of Binary MRF Modelsion approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚远县| 禄丰县| 灵台县| 西安市| 皮山县| 海口市| 澎湖县| 富川| 延津县| 克什克腾旗| 抚州市| 定州市| 桐梓县| 天长市| 乐至县| 黄骅市| 疏附县| 漠河县| 攀枝花市| 海伦市| 绍兴市| 宜昌市| 长乐市| 永新县| 平江县| 信宜市| 邹城市| 印江| 辉县市| 连城县| 余干县| 仙游县| 昌吉市| 蓬莱市| 东乡族自治县| 舒兰市| 改则县| 吉安市| 得荣县| 岳西县| 南华县|