找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Flow Theory of Nonlinear Dynamical Systems with Applications; Jing Tang Xing Book 2015 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: fundoplication
41#
發(fā)表于 2025-3-28 18:32:02 | 只看該作者
42#
發(fā)表于 2025-3-28 22:26:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:31:54 | 只看該作者
Sozialpsychiatrie als Wirkungsforschung,he energy flow behaviour of fixed points, periodical solutions or closed orbits as well as their stabilities. Some stability theorems in the energy flow forms are presented and two examples, a planar system and the Van der Pol’s equation are investigated to illustrate the applications of the develop
44#
發(fā)表于 2025-3-29 04:41:02 | 只看該作者
https://doi.org/10.1007/978-3-662-25039-6r dynamical system is expanded into the Taylor series at zero equilibrium point, and is approximated to the first order of disturbance. The corresponding energy flow equation is approximated to the form of second order of disturbance. Using a summation decomposition of a matrix, the non-symmetrical
45#
發(fā)表于 2025-3-29 10:23:44 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:17 | 只看該作者
Sozialpsychologie der Organisationow theorem relying upon the coordinate transformations transforms the general system into its normal form in the energy flow space, from which dynamical information can be deduced from the Taylor series of an energy flow at a single point. In this chapter, we shall consider dynamical properties whic
47#
發(fā)表于 2025-3-29 17:02:04 | 只看該作者
48#
發(fā)表于 2025-3-29 21:17:18 | 只看該作者
Rechtsextremismus in der Psychotherapiem and Marsden (1978 / 1980); Guckenheimer and Holmes (1983); Thompson and Stewart (1986); Zhu (1996, 2003). This chapter discusses the Hamiltonian system from the point view of energy flows. After giving the general fundamental equation governing Hamiltonian systems, its energy flow equations as wel
49#
發(fā)表于 2025-3-30 02:17:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大姚县| 惠来县| 民和| 云和县| 澳门| 峨边| 连南| 井冈山市| 滨州市| 大余县| 铁力市| 北川| 桐乡市| 河北区| 姜堰市| 保定市| 陕西省| 新安县| 科技| 垦利县| 东城区| 望城县| 翼城县| 凭祥市| 保亭| 昌黎县| 秭归县| 台东县| 莆田市| 顺平县| 沂水县| 兴城市| 章丘市| 凌云县| 迁安市| 佛学| 金华市| 东兰县| 上思县| 宕昌县| 抚宁县|