找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Endotrivial Modules; Nadia Mazza Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 Endotrivial modul

[復(fù)制鏈接]
樓主: DIGN
11#
發(fā)表于 2025-3-23 11:22:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:06:02 | 只看該作者
,The Torsionfree Part of the Group of?Endotrivial Modules,n the action of G by conjugation on its noncyclic elementary abelian p-subgroups. So, we make a detour via the category of noncyclic elementary abelian p-subgroups of a finite group. We end the chapter with results about finding “torsionfree” generators, and we present various partial results, including very recent ones.
13#
發(fā)表于 2025-3-23 20:36:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:46 | 只看該作者
Endotrivial Modules for Very Important Groups,roups and their covering groups, finite groups of Lie type, and sporadic simple groups and their covering groups. This final chapter ends with an idiosyncratic observation, leading to an open question.
15#
發(fā)表于 2025-3-24 03:55:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:23 | 只看該作者
Datenerfassung und Datenbereinigung,ons needed in finite group theory, modular representation theory, homological algebra, and, in view of recent developments in the study of endotrivial modules, we also include some concepts from algebraic topology.
17#
發(fā)表于 2025-3-24 12:59:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:09:07 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:37 | 只看該作者
https://doi.org/10.1007/978-3-658-27608-9t suffice in general and several ingenious methods have been devised to answer this question: using ordinary character theory, methods derived from algebraic geometry, and methods using homotopy theory. We present each of these and give a few examples of their successful applications.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 郯城县| 吉木萨尔县| 凤凰县| 公安县| 浦江县| 浦东新区| 安多县| 沐川县| 邵阳市| 章丘市| 邢台市| 孝义市| 双牌县| 舒城县| 昭通市| 龙泉市| 夹江县| 历史| 苍梧县| 遵义县| 达拉特旗| 色达县| 滦南县| 宜都市| 驻马店市| 定襄县| 桑植县| 清新县| 郯城县| 湘潭县| 平邑县| 苏尼特右旗| 铜梁县| 大足县| 泸溪县| 永泰县| 象山县| 太湖县| 清水河县| 永修县|