找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Endotrivial Modules; Nadia Mazza Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 Endotrivial modul

[復(fù)制鏈接]
樓主: DIGN
11#
發(fā)表于 2025-3-23 11:22:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:06:02 | 只看該作者
,The Torsionfree Part of the Group of?Endotrivial Modules,n the action of G by conjugation on its noncyclic elementary abelian p-subgroups. So, we make a detour via the category of noncyclic elementary abelian p-subgroups of a finite group. We end the chapter with results about finding “torsionfree” generators, and we present various partial results, including very recent ones.
13#
發(fā)表于 2025-3-23 20:36:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:46 | 只看該作者
Endotrivial Modules for Very Important Groups,roups and their covering groups, finite groups of Lie type, and sporadic simple groups and their covering groups. This final chapter ends with an idiosyncratic observation, leading to an open question.
15#
發(fā)表于 2025-3-24 03:55:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:23 | 只看該作者
Datenerfassung und Datenbereinigung,ons needed in finite group theory, modular representation theory, homological algebra, and, in view of recent developments in the study of endotrivial modules, we also include some concepts from algebraic topology.
17#
發(fā)表于 2025-3-24 12:59:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:09:07 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:37 | 只看該作者
https://doi.org/10.1007/978-3-658-27608-9t suffice in general and several ingenious methods have been devised to answer this question: using ordinary character theory, methods derived from algebraic geometry, and methods using homotopy theory. We present each of these and give a few examples of their successful applications.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九寨沟县| 伊金霍洛旗| 寿阳县| 庄浪县| 漳浦县| 廉江市| 广昌县| 宜黄县| 定兴县| 长阳| 河源市| 湖口县| 东丰县| 武功县| 深州市| 柳江县| 嵊泗县| 铜梁县| 淮北市| 汉阴县| 垦利县| 巧家县| 平度市| 阳山县| 遵义市| 江都市| 陇川县| 和林格尔县| 阿城市| 兴文县| 达拉特旗| 无棣县| 饶阳县| 壶关县| 温州市| 奉新县| 中牟县| 锡林郭勒盟| 南宁市| 荔浦县| 平塘县|