找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Enabling AI Applications in Data Science; Aboul-Ella Hassanien,Mohamed Hamed N. Taha,Nour El Book 2021 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: grateful
31#
發(fā)表于 2025-3-26 21:38:34 | 只看該作者
https://doi.org/10.1007/3-540-27986-5ying diseases. This chapter introduces a survey on research papers on leaf plant diseases detection based on DL, and analyze in terms of the database used, transfer models, and miss-classification achieved.
32#
發(fā)表于 2025-3-27 04:38:35 | 只看該作者
Hysteresis, entrapment, and contact angle size for classification and detection of medical diagnoses are explained. Moreover, specific methods are considered in medical images such as image compression, image format, image resize, and other essential aspects. Finally, we also give a brief summary of deep learning algorithms that are used with medical images.
33#
發(fā)表于 2025-3-27 06:46:23 | 只看該作者
34#
發(fā)表于 2025-3-27 10:37:18 | 只看該作者
Towards Artificial Intelligence: Concepts, Applications, and Innovationsion of their projects. The contributions presented in this document reveal the high potential of AI methods as tools for predicting and optimizing different applications. In addition, challenges and directions for future research in the area of the use of AI techniques are presented and discussed.
35#
發(fā)表于 2025-3-27 16:32:41 | 只看該作者
Big Data and Deep Learning in Plant Leaf Diseases Classification for Agricultureying diseases. This chapter introduces a survey on research papers on leaf plant diseases detection based on DL, and analyze in terms of the database used, transfer models, and miss-classification achieved.
36#
發(fā)表于 2025-3-27 20:16:37 | 只看該作者
Machine Learning Cancer Diagnosis Based on Medical Image Size and Modalities size for classification and detection of medical diagnoses are explained. Moreover, specific methods are considered in medical images such as image compression, image format, image resize, and other essential aspects. Finally, we also give a brief summary of deep learning algorithms that are used with medical images.
37#
發(fā)表于 2025-3-27 23:11:11 | 只看該作者
38#
發(fā)表于 2025-3-28 02:55:46 | 只看該作者
Stochastic SPG with Minibatchesnificantly onto proximal gradient iterations, in order to find an efficient approach for nonsmooth (composite) population risk functions. The complexity of finding optimal predictors by minimizing regularized risk is largely understood for simple regularizations such as . norms. However, more comple
39#
發(fā)表于 2025-3-28 07:02:52 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:46 | 只看該作者
Reducing Redundant Association Rules Using Type-2 Fuzzy Logicificial intelligence, machine learning, and soft computing. Association Rule Mining (ARM) in enormous databases is a fundamental topic of DM. Discovering frequent itemsets are an underlying process in ARM. Frequent itemsets are employed using statistical measures like Support (Sup) and Confidence (C
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云梦县| 孝义市| 绥江县| 砀山县| 安新县| 平潭县| 阳城县| 布尔津县| 秀山| 靖州| 通江县| 北宁市| 福泉市| 广灵县| 海南省| 哈巴河县| 泰安市| 玛多县| 夏邑县| 巫溪县| 阜平县| 黄冈市| 理塘县| 麦盖提县| 宁陵县| 察雅县| 阳山县| 通山县| 博白县| 临桂县| 治县。| 潜江市| 仙桃市| 桓台县| 西昌市| 万宁市| 苍梧县| 祁阳县| 江陵县| 荥阳市| 鹤岗市|