找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Methods in Natural Language Generation; Data-oriented Method Emiel Krahmer,Mari?t Theune Book 2010 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
查看: 45988|回復(fù): 58
樓主
發(fā)表于 2025-3-21 20:06:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Empirical Methods in Natural Language Generation
副標(biāo)題Data-oriented Method
編輯Emiel Krahmer,Mari?t Theune
視頻videohttp://file.papertrans.cn/309/308867/308867.mp4
概述Up to date results.Fast conference proceedings.State-of-the-art report
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Empirical Methods in Natural Language Generation; Data-oriented Method Emiel Krahmer,Mari?t Theune Book 2010 Springer-Verlag Berlin Heidelb
描述Natural language generation (NLG) is a subfield of natural language processing (NLP) that is often characterized as the study of automatically converting non-linguistic representations (e.g., from databases or other knowledge sources) into coherent natural language text. In recent years the field has evolved substantially. Perhaps the most important new development is the current emphasis on data-oriented methods and empirical evaluation. Progress in related areas such as machine translation, dialogue system design and automatic text summarization and the resulting awareness of the importance of language generation, the increasing availability of suitable corpora in recent years, and the organization of shared tasks for NLG, where different teams of researchers develop and evaluate their algorithms on a shared, held out data set have had a considerable impact on the field, and this book offers the first comprehensive overview of recent empirically oriented NLG research.
出版日期Book 2010
關(guān)鍵詞automatic translation; human-human communication; information extraction; information retrieval; knowled
版次1
doihttps://doi.org/10.1007/978-3-642-15573-4
isbn_softcover978-3-642-15572-7
isbn_ebook978-3-642-15573-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Empirical Methods in Natural Language Generation影響因子(影響力)




書目名稱Empirical Methods in Natural Language Generation影響因子(影響力)學(xué)科排名




書目名稱Empirical Methods in Natural Language Generation網(wǎng)絡(luò)公開度




書目名稱Empirical Methods in Natural Language Generation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Empirical Methods in Natural Language Generation被引頻次




書目名稱Empirical Methods in Natural Language Generation被引頻次學(xué)科排名




書目名稱Empirical Methods in Natural Language Generation年度引用




書目名稱Empirical Methods in Natural Language Generation年度引用學(xué)科排名




書目名稱Empirical Methods in Natural Language Generation讀者反饋




書目名稱Empirical Methods in Natural Language Generation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:05 | 只看該作者
Empirical Methods in Natural Language Generation978-3-642-15573-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 02:28:35 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:04 | 只看該作者
https://doi.org/10.1007/978-3-642-68264-3nt, readable output. However, traditional knowledge-intensive approaches have been of limited utility in addressing this problem since they cannot be effectively scaled to operate in domain-independent, large-scale applications. Due to this difficulty, existing text-to-text generation systems rarely
5#
發(fā)表于 2025-3-22 09:30:32 | 只看該作者
6#
發(fā)表于 2025-3-22 14:56:15 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:02 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:37 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:00 | 只看該作者
Erich Dambacher,Oliver Sch?ffskiack from the current generation context (e.g. a user and a surface realiser). The model is adaptive and incremental at the turn level, and optimises NLG actions with respect to a data-driven objective function. We study its use in a standard NLG problem: how to present information (in this case a se
10#
發(fā)表于 2025-3-23 06:01:53 | 只看該作者
Patil Shivprasad Suresh,Anmol,Upendra Sharmaata. One of the challenges these systems face is the generation of geographic descriptions that refer to the location of events or patterns in the data. Based on our studies in the domain of meteorology we present an approach to generating approximate geographic descriptions involving regions, which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 11:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永靖县| 井陉县| 政和县| 彭水| 饶平县| 涡阳县| 诸暨市| 甘洛县| 青岛市| 重庆市| 博爱县| 司法| 保山市| 沂源县| 香格里拉县| 中卫市| 古蔺县| 博白县| 霸州市| 咸阳市| 泰顺县| 香格里拉县| 葫芦岛市| 高台县| 营山县| 中宁县| 邯郸市| 长乐市| 兰考县| 堆龙德庆县| 郸城县| 昭苏县| 临汾市| 西藏| 自贡市| 闽清县| 新乐市| 曲阳县| 油尖旺区| 集安市| 繁峙县|