找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Trends in Mechanical Engineering; Select Proceedings o L. M. Das,Naveen Kumar,Pramod Bhatia Conference proceedings 2021 The Editor

[復制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 15:13:53 | 只看該作者
42#
發(fā)表于 2025-3-28 22:04:32 | 只看該作者
Algorithm for Translation and Rotation Motions of Gantry Robotare compared with prediction following well-known D-H parameter. A good agreement on the end positions between the test and prediction are illustrated. Arduino code employed to control the real-time execution of the gantry robot movement in a semi-automatic mode is provided for the designer.
43#
發(fā)表于 2025-3-29 01:28:24 | 只看該作者
Evaluation of the Female for Infertility,ed in SciLab using literature data and found capable to show more accurate results. Feed forward back propagation algorithm is used in this ANN model to minimize the error and to update the weights. Sigmoid activation function is used for hidden layer neurons and output layer neuron. ANN is found as best predictor for journal bearing analysis.
44#
發(fā)表于 2025-3-29 06:32:45 | 只看該作者
https://doi.org/10.1007/978-3-7091-4726-9sses could be specified. The suggested algorithm is optimized for minimal machining time and enhanced surface roughness. The programming of the new interpolation scheme, using circular and linear segments, must be applied to the specific part.
45#
發(fā)表于 2025-3-29 09:23:45 | 只看該作者
46#
發(fā)表于 2025-3-29 14:58:18 | 只看該作者
47#
發(fā)表于 2025-3-29 16:33:13 | 只看該作者
Artificial Neural Network Model Development for the Analysis of Maximum Pressure of Hole Entry Journn developing computational approaches to analyse the complex and time-consuming problems. The present paper shows the ANN predictions for maximum pressure of hole entry hybrid journal bearing for different values of non-dimensional load and speed parameters. The present ANN model is trained and test
48#
發(fā)表于 2025-3-29 20:25:52 | 只看該作者
49#
發(fā)表于 2025-3-30 03:47:34 | 只看該作者
Evaluation of Seat to Head Transmissibility at Different Backrest Conditions During Whole Body Vibrath percentile anthropometric data of Indian male population when exposed to whole body vibration. Human model has been subjected to three different back support postures (without back support, vertical back support and inclined back support) at acceleration magnitudes of 0.25, 0.5 and 1.0?m/s. rms.
50#
發(fā)表于 2025-3-30 06:11:44 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 09:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
库车县| 星子县| 分宜县| 拜泉县| 沈阳市| 皋兰县| 潍坊市| 梅州市| 蓬安县| 鹿邑县| 乡宁县| 新营市| 宾川县| 无锡市| 金塔县| 深泽县| 奎屯市| 佛冈县| 开鲁县| 巫山县| 敦化市| 鹿泉市| 宝鸡市| 方山县| 清镇市| 太仆寺旗| 合水县| 林州市| 蒲城县| 集贤县| 建水县| 喀喇| 图们市| 太仓市| 明水县| 新邵县| 华蓥市| 临夏市| 湾仔区| 克什克腾旗| 镇安县|