找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Technologies in Computing; Third EAI Internatio Mahdi H. Miraz,Peter S. Excell,Maaruf Ali Conference proceedings 2020 ICST Institu

[復制鏈接]
樓主: monster
31#
發(fā)表于 2025-3-26 22:56:34 | 只看該作者
A Review of Underwater Acoustic, Electromagnetic and Optical Communicationsns, for example between Scuba divers and the ship, optical frequencies are feasible. For long distance undersea communications, very low electromagnetic frequencies are still the most established way to maintain contact, whilst the vessel remain submerged.
32#
發(fā)表于 2025-3-27 03:20:40 | 只看該作者
https://doi.org/10.1007/978-1-4020-5018-3.12% accuracy for 1D CNN and LSTM, respectively. In addition, it has been observed that dimension reduction techniques have no positive impact on 1D-CNN and LSTM. Without any dimension reduction technique, MFCC with 1D-CNN has demonstrated better accuracy compared to MFCC with LSTM by showing 97.26% and 93.83% of accuracy, respectively.
33#
發(fā)表于 2025-3-27 08:01:04 | 只看該作者
34#
發(fā)表于 2025-3-27 12:12:21 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:00 | 只看該作者
Bangla Speech Recognition Using 1D-CNN and LSTM with Different Dimension Reduction Techniques.12% accuracy for 1D CNN and LSTM, respectively. In addition, it has been observed that dimension reduction techniques have no positive impact on 1D-CNN and LSTM. Without any dimension reduction technique, MFCC with 1D-CNN has demonstrated better accuracy compared to MFCC with LSTM by showing 97.26% and 93.83% of accuracy, respectively.
36#
發(fā)表于 2025-3-27 19:25:56 | 只看該作者
Comparative Analysis of Dimension Reduction Techniques Over Classification Algorithms for Speech Emo dimension reduction techniques namely Recursive Feature Elimination, Principal Component Analysis and P-value Calculation had been applied to the dataset. Then classifier algorithms were used for accuracy again. Later this study showed that a progress in terms of accuracy (63.12%) had resulted from Gradient Boosting.
37#
發(fā)表于 2025-3-28 01:50:56 | 只看該作者
Investigations on Performances of Pre-trained U-Net Models for 2D Ultrasound Kidney Image Segmentatifor segmentation of kidneys from 2D ultrasound images. Experimentation results obtained shows that U-Net model with VGG-16 backbone outperformed with a promising accuracy of 0.89, thus demonstrating that segmentation can be done even with limited count of images within the dataset.
38#
發(fā)表于 2025-3-28 05:10:06 | 只看該作者
39#
發(fā)表于 2025-3-28 08:37:35 | 只看該作者
978-3-030-60035-8ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
40#
發(fā)表于 2025-3-28 11:35:44 | 只看該作者
Emerging Technologies in Computing978-3-030-60036-5Series ISSN 1867-8211 Series E-ISSN 1867-822X
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜都市| 海丰县| 湘潭县| 建湖县| 阜平县| 广州市| 嫩江县| 泰顺县| 普陀区| 北川| 新密市| 新绛县| 黔江区| 弥勒县| 连平县| 新疆| 星座| 柘荣县| 嵩明县| 樟树市| 福贡县| 和林格尔县| 叶城县| 和林格尔县| 温泉县| 和林格尔县| 西畴县| 东莞市| 梁平县| 吴忠市| 丘北县| 嘉黎县| 绥芬河市| 巴东县| 如皋市| 吉安县| 西平县| 永胜县| 龙门县| 梁河县| 台东市|