找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Networking Architecture and Technologies; First International Wei Quan Conference proceedings 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: burgeon
41#
發(fā)表于 2025-3-28 16:33:53 | 只看該作者
42#
發(fā)表于 2025-3-28 19:25:56 | 只看該作者
Emerging Networking Architecture and Technologies978-981-19-9697-9Series ISSN 1865-0929 Series E-ISSN 1865-0937
43#
發(fā)表于 2025-3-29 02:58:52 | 只看該作者
44#
發(fā)表于 2025-3-29 06:47:29 | 只看該作者
45#
發(fā)表于 2025-3-29 08:14:26 | 只看該作者
Conference proceedings 2023ld in? Shenzhen, China, in October 2022..The 50 papers presented were thoroughly reviewed and selected from the 106 submissions. The volume focuses?on the latest achievements in the field of emerging network technologies, covering the topics of emerging networking architecture, network frontier tech
46#
發(fā)表于 2025-3-29 15:22:45 | 只看該作者
47#
發(fā)表于 2025-3-29 16:15:17 | 只看該作者
H. Müller-Braunschweig,W.-Eberhard Mehlingge, a multi-agent deep reinforcement learning based algorithm is proposed for each resource provider to optimize its pricing strategy based on the environment information. Finally, extensive simulations have been performed to demonstrate the excellent performance of the proposed algorithm.
48#
發(fā)表于 2025-3-29 23:28:38 | 只看該作者
,Morphologie der Flie?gew?sser, which is used to identify the same video with different formats. Compared with the traditional approach, the proposed scheme can both ensure the integrity of the moderation data and reduce the total computation overhead.
49#
發(fā)表于 2025-3-30 00:36:03 | 只看該作者
Multi-agent Deep Reinforcement Learning-based Incentive Mechanism For Computing Power Networkge, a multi-agent deep reinforcement learning based algorithm is proposed for each resource provider to optimize its pricing strategy based on the environment information. Finally, extensive simulations have been performed to demonstrate the excellent performance of the proposed algorithm.
50#
發(fā)表于 2025-3-30 07:45:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
八宿县| 寿光市| 桐城市| 偃师市| 万安县| 江华| 沙雅县| 嘉义县| 芦山县| 遂平县| 康乐县| 乌鲁木齐市| 潢川县| 邓州市| 资中县| 东至县| 黑山县| 鄯善县| 浦江县| 永寿县| 天全县| 昌吉市| 富锦市| 县级市| 新田县| 柏乡县| 清丰县| 专栏| 双流县| 建瓯市| 噶尔县| 弋阳县| 石泉县| 慈溪市| 田东县| 治多县| 兰溪市| 南木林县| 莫力| 阿克苏市| 寿光市|