找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emergent Nonlinear Phenomena in Bose-Einstein Condensates; Theory and Experimen Panayotis G. Kevrekidis,Dimitri J. Frantzeskakis,R Book 200

[復(fù)制鏈接]
樓主: 復(fù)雜
51#
發(fā)表于 2025-3-30 08:41:13 | 只看該作者
https://doi.org/10.1007/978-3-663-10841-2, the experiments have inspired theoretical work in many directions. A particular example is the work on solitary waves in dimensional crossovers induced by trapping potentials that restrict the geometry, as discussed in Chap. 7.
52#
發(fā)表于 2025-3-30 15:31:27 | 只看該作者
https://doi.org/10.1007/978-3-319-75981-4ues. When the external potential is decaying at infinity, finite-dimensional reductions of the GP equation can be derived for modeling of dynamics of localized modes. When the external potential is confining, the GP equation can be recovered from the multi-particle linear Schr?dinger equation.
53#
發(fā)表于 2025-3-30 19:04:45 | 只看該作者
54#
發(fā)表于 2025-3-31 00:00:59 | 只看該作者
55#
發(fā)表于 2025-3-31 02:28:04 | 只看該作者
https://doi.org/10.1007/978-3-531-90720-8stal lattices, polarons and photons in optical fibers. Moreover, the BEC experimentalists have reached such a high level of accuracy to create in the lab, so to speak, paradigmatic Hamiltonians, which were first introduced as idealized theoretical models to study, among others, dynamical instabilities or quantum phase transitions.
56#
發(fā)表于 2025-3-31 08:11:55 | 只看該作者
57#
發(fā)表于 2025-3-31 10:17:27 | 只看該作者
58#
發(fā)表于 2025-3-31 15:55:04 | 只看該作者
59#
發(fā)表于 2025-3-31 17:55:02 | 只看該作者
60#
發(fā)表于 2025-3-31 22:56:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷波县| 庄河市| 龙川县| 黑水县| 平利县| 万盛区| 定远县| 沁源县| 乾安县| 沙洋县| 刚察县| 长沙市| 乌兰察布市| 曲麻莱县| 济源市| 拉孜县| 巴里| 高陵县| 抚州市| 成武县| 南充市| 南丰县| 亳州市| 宜昌市| 吉安市| 进贤县| 林芝县| 基隆市| 育儿| 专栏| 读书| 桃园市| 潼关县| 会泽县| 正定县| 衡水市| 凤山市| 三江| 大关县| 城步| 永胜县|