找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Embeddings and Extensions in Analysis; J. H. Wells,L. R. Williams Book 1975 Springer-Verlag Berlin Heidelberg 1975 Analysis.Einbettung.Erw

[復(fù)制鏈接]
查看: 6763|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:26:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Embeddings and Extensions in Analysis
編輯J. H. Wells,L. R. Williams
視頻videohttp://file.papertrans.cn/308/307986/307986.mp4
叢書(shū)名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書(shū)封面Titlebook: Embeddings and Extensions in Analysis;  J. H. Wells,L. R. Williams Book 1975 Springer-Verlag Berlin Heidelberg 1975 Analysis.Einbettung.Erw
描述The object of this book is a presentation of the major results relating to two geometrically inspired problems in analysis. One is that of determining which metric spaces can be isometrically embedded in a Hilbert space or, more generally, P in an L space; the other asks for conditions on a pair of metric spaces which will ensure that every contraction or every Lipschitz-Holder map from a subset of X into Y is extendable to a map of the same type from X into Y. The initial work on isometric embedding was begun by K. Menger [1928] with his metric investigations of Euclidean geometries and continued, in its analytical formulation, by I. J. Schoenberg [1935] in a series of papers of classical elegance. The problem of extending Lipschitz-Holder and contraction maps was first treated by E. J. McShane and M. D. Kirszbraun [1934]. Following a period of relative inactivity, attention was again drawn to these two problems by G. Minty‘s work on non-linear monotone operators in Hilbert space [1962]; by S. Schonbeck‘s fundamental work in characterizing those pairs (X,Y) of Banach spaces for which extension of contractions is always possible [1966]; and by the generalization of many of Schoenbe
出版日期Book 1975
關(guān)鍵詞Analysis; Einbettung; Erweiterung; Extensions; Hilbert space; Mint; banach spaces; boundary element method;
版次1
doihttps://doi.org/10.1007/978-3-642-66037-5
isbn_softcover978-3-642-66039-9
isbn_ebook978-3-642-66037-5
copyrightSpringer-Verlag Berlin Heidelberg 1975
The information of publication is updating

書(shū)目名稱Embeddings and Extensions in Analysis影響因子(影響力)




書(shū)目名稱Embeddings and Extensions in Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Embeddings and Extensions in Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis被引頻次




書(shū)目名稱Embeddings and Extensions in Analysis被引頻次學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis年度引用




書(shū)目名稱Embeddings and Extensions in Analysis年度引用學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis讀者反饋




書(shū)目名稱Embeddings and Extensions in Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:35:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:43:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:54 | 只看該作者
The Classes N(X) and RPD(X) : Integral Representations,s introduced by Schoenberg [79,80,81] and recently refined by Bretagnolle, Dacunha Castelle, and Krivine [11], and Kuelbs [52], we are going to present characterizations of the classes RPD(.) and .(.) when . is one of the spaces ?. or . (. = 1,2, … ; 0 < . ≤ ∞ ).
5#
發(fā)表于 2025-3-22 11:19:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:41 | 只看該作者
,The Extension Problem for Lipschitz-H?lder Maps between , Spaces, In this chapter we treat the natural and interesting generalization of this result to . spaces. Starting with two σ-finite measure spaces (Ω, μ) and (.) and initial values for . and . in [1, ∞], the problem is to determine those values of α for which the pair (.(μ), .(.)) has the extension property
7#
發(fā)表于 2025-3-22 17:48:38 | 只看該作者
Kandikere R. Sridhar,Namera C. Karunbedded in a given Banach space. First, we consider the question of which metric spaces (.) can be isometrically embedded in a Hilbert space ., that is, under what metric conditions does there exist a map ?: . → . such that $$|phi(s)-phi(t)|= ho(s,t)$$ (1.1) for all points . and . in .? Secondly, we
8#
發(fā)表于 2025-3-23 00:35:31 | 只看該作者
9#
發(fā)表于 2025-3-23 02:55:11 | 只看該作者
Anita Kumari,Jyoti Upadhyay,Rohit Joshire natural relatives of inequality (4.15) and the now standard inequalities of Clarkson. These inequalities are crucial to the problem of extending Lipschitz-H?lder maps of order a between . spaces (see §19). In addition they are of considerable intrinsic interest, a point we here emphasize by apply
10#
發(fā)表于 2025-3-23 08:30:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆元县| 沾益县| 延川县| 孝义市| 木兰县| 翼城县| 如东县| 德安县| 仙游县| 柘城县| 明星| 南涧| 桐城市| 沈阳市| 井陉县| 定结县| 贵港市| 长葛市| 朝阳区| 大渡口区| 卢氏县| 永宁县| 南京市| 喜德县| 张家港市| 中阳县| 来安县| 安龙县| 龙江县| 阿坝县| 右玉县| 资兴市| 股票| 乌海市| 博客| 鄯善县| 庐江县| 铜梁县| 新宾| 遵义市| 襄汾县|